The Ca/calmodulin (CaM)-dependent protein kinase II (CaMKII) plays a fundamental role in learning and possibly also in memory. However, current mechanistic models require fundamental revision. CaMKII autophosphorylation at Thr286 (pThr286) does not provide the molecular basis for long-term memory, as long believed.
View Article and Find Full Text PDFThe Ca/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a ubiquitous mediator of cellular Ca signals with both enzymatic and structural functions. Here, we briefly introduce the complex regulation of CaMKII and then provide a comprehensive overview of the expanding toolbox to study CaMKII. Beyond a variety of distinct mutants, these tools now include optical methods for measurement and manipulation, with the latter including light-induced inhibition, stimulation, and sequestration.
View Article and Find Full Text PDFObjectives: Recombinant protein production processes in Escherichia coli are usually operated in fed-batch mode; therefore, the elaboration of a fed-batch cultivation protocol in microtiter plates that allows for screening under production like conditions is particularly appealing.
Results: A highly reproducible fed-batch like microtiter plate cultivation protocol for E. coli in a micro-bioreactor system with advanced online monitoring capabilities was developed.
Product quality assurance strategies in production of biopharmaceuticals currently undergo a transformation from empirical "quality by testing" to rational, knowledge-based "quality by design" approaches. The major challenges in this context are the fragmentary understanding of bioprocesses and the severely limited real-time access to process variables related to product quality and quantity. Data driven modeling of process variables in combination with model predictive process control concepts represent a potential solution to these problems.
View Article and Find Full Text PDFMass spectrometry has been frequently applied to monitor the O₂ and CO₂ content in the off-gas of animal cell culture fermentations. In contrast to classical mass spectrometry the proton transfer reaction mass spectrometry (PTR-MS) provides additional information of volatile organic compounds by application of a soft ionization technology. Hence, the spectra show less fragments and can more accurately assigned to particular compounds.
View Article and Find Full Text PDFEscherichia coli K-12 and B strains are among the most frequently used bacterial hosts for production of recombinant proteins on an industrial scale. To improve existing processes and to accelerate bioprocess development, we performed a detailed host analysis. We investigated the different behaviors of the E.
View Article and Find Full Text PDFBackground: In the biopharmaceutical industry, Escherichia coli (E. coli) strains are among the most frequently used bacterial hosts for producing recombinant proteins because they allow a simple process set-up and they are Food and Drug Administration (FDA)-approved for human applications. Widespread use of E.
View Article and Find Full Text PDFWe report on the implementation of proton transfer reaction-mass spectrometry (PTR-MS) technology for on-line monitoring of volatile organic compounds (VOCs) in the off-gas of bioreactors. The main part of the work was focused on the development of an interface between the bioreactor and an analyzer suitable for continuous sampling of VOCs emanating from the bioprocess. The permanently heated sampling line with an inert surface avoids condensation and interaction of volatiles during transfer to the PTR-MS.
View Article and Find Full Text PDFIn order to release host cells from plasmid-mediated increases in metabolic load and high gene dosages, we developed a plasmid-free, T7-based E. coli expression system in which the target gene is site-specifically integrated into the genome of the host. With this system, plasmid-loss, a source of instability for conventional expression systems, was eliminated.
View Article and Find Full Text PDFBackground: Interpretation of comprehensive DNA microarray data sets is a challenging task for biologists and process engineers where scientific assistance of statistics and bioinformatics is essential. Interdisciplinary cooperation and concerted development of software-tools for simplified and accelerated data analysis and interpretation is the key to overcome the bottleneck in data-analysis workflows. This approach is exemplified by gcExplorer an interactive visualization toolbox based on cluster analysis.
View Article and Find Full Text PDFThe autoprotease Npro significantly enhances expression of fused peptides and proteins and drives the formation of inclusion bodies during protein expression. Upon refolding, the autoprotease becomes active and cleaves itself specifically at its own C-terminus releasing the target protein with its authentic N-terminus. Npro wild-type and its mutant EDDIE, respectively, were fused N-terminally to the model proteins green fluorescent protein, staphylococcus Protein A domain D, inhibitory peptide of senescence-evasion-factor, and the short 16 amino acid peptide pep6His.
View Article and Find Full Text PDFNucleic Acids Res
February 2009
A major challenge in microarray design is the selection of highly specific oligonucleotide probes for all targeted genes of interest, while maintaining thermodynamic uniformity at the hybridization temperature. We introduce a novel microarray design framework (Thermodynamic Model-based Oligo Design Optimizer, TherMODO) that for the first time incorporates a number of advanced modelling features: (i) A model of position-dependent labelling effects that is quantitatively derived from experiment. (ii) Multi-state thermodynamic hybridization models of probe binding behaviour, including potential cross-hybridization reactions.
View Article and Find Full Text PDFSedimentation field-flow fractionation (sedFFF) was evaluated to characterize the size of Delta(4-23)TEM-beta-lactamase inclusion bodies (IBs) overexpressed in fed-batch cultivations of Escherichia coli. Heterologous Delta(4-23)TEM-beta-lactamase protein formed different sizes of IBs, depending upon the induction conditions. In the early phases of recombinant protein expression, induced with low concentrations of IPTG (isopropyl-beta-d-thiogalactoside), IB masses were larger than expected and showed heterogeneous size distributions.
View Article and Find Full Text PDFThe enzyme TEM1-beta-lactamase has been used as a model to study the impact of different cultivation and induction regimes on the structure of cytosolic inclusion bodies (IBs). The protein has been heterologously expressed in Escherichia coli in fed-batch cultivations at different temperatures (30, 37, and 40 degrees C) as well as induction regimes that guaranteed distinct product formation rates and ratios of soluble to aggregated protein. Additionally, shake flask cultivations at 20, 30, and 37 degrees C were performed.
View Article and Find Full Text PDFThe use of strong promoter systems for recombinant protein production generates high product yields, but also overburdens the host cell metabolism and compromises production. Escherichia coli has highly developed regulatory pathways that are immediately responsive to adverse conditions. To gain insight into stress response mechanisms and to detect marker genes and proteins for stress specific monitoring time course analysis of controlled chemostat cultivations was performed using E.
View Article and Find Full Text PDFWe describe a prokaryotic expression system using the autoproteolytic function of N(pro) from classical swine fever virus. Proteins or peptides expressed as N(pro) fusions are deposited as inclusion bodies. On in vitro refolding by switching from chaotropic to kosmotropic conditions, the fusion partner is released from the C-terminal end of the autoprotease by self-cleavage, leaving the target protein with an authentic N terminus.
View Article and Find Full Text PDFDue to the lack of appropriate sensors for monitoring changes of Escherichia coli cells and the huge complexity of cellular systems, many of the present protein production processes are still far from optimal. Aiming at maximal exploitation of the host cell, enhanced knowledge of cellular reactions related to recombinant protein expression is required. Current methods like DNA microarrays and 2-D-electrophoresis enable the acquisition of transcriptional and translational activity shifts in stress situations like heat shock, general stress response, nutrient limitation, and stress caused by overexpression of heterologous proteins.
View Article and Find Full Text PDFThe accomplishment of the quantification of the recombinant protein content of whole bacterial cells by FT-IR spectroscopy by application of chemometrics is shown. Recombinant Escherichia coli cells expressing an inclusion body forming fusion protein were dried on a 96-well silicon plate for the analysis in a high-throughput FT-IR spectrometer. Acquired spectra of additionally conventionally quantified samples were used to establish a multivariate calibration.
View Article and Find Full Text PDFDifferential 2-DE (DIGE) is a widely applied tool for the quantitative analysis of differentially represented proteins. The method involves covalent minimal labeling of proteins prior to their electrophoretic separation using CyDye DIGE Fluor minimal dyes. This methodology creates two different species per protein, the labeled (approx.
View Article and Find Full Text PDFThe use of plasmid DNA for gene therapeutical purposes is a novel technology with advantages and drawbacks. One of the required improvements is to avoid antibiotic resistance genes or other additional sequences for selection within the plasmid. Here, we describe an alternative approach to equip a ColE1 plasmid with a regulatory function within the cell, which could be used for selection of plasmid carrying cells.
View Article and Find Full Text PDFThe advancement of bioprocess monitoring will play a crucial role to meet the future requirements of bioprocess technology. Major issues are the acceleration of process development to reduce the time to the market and to ensure optimal exploitation of the cell factory and further to cope with the requirements of the Process Analytical Technology initiative. Due to the enormous complexity of cellular systems and lack of appropriate sensor systems microbial production processes are still poorly understood.
View Article and Find Full Text PDFThe key objective for the optimisation of recombinant protein production in bacteria is to optimize the exploitation of the host cell's synthesis potential. Recent studies show that the novel concept of transcription rate control allows the tuning of recombinant gene expression in relation to the metabolic capacity of the host cell. To adjust the inducer-biomass ratio to a tolerable level, real-time knowledge about key process variables is paramount.
View Article and Find Full Text PDFA high number of economically important recombinant proteins are produced in Escherichia coli based host/vector systems. The major obstacle for improving current processes is a lack of appropriate on-line in situ methods for the monitoring of metabolic burden and critical state variables. Here, a pre-evaluation of the reporter green fluorescent protein (GFP) was undertaken to assess its use as a reporter of stress associated promoter regulation.
View Article and Find Full Text PDFThe main goal of this work was to develop a strategy that enables tuning of recombinant gene expression relative to the metabolic capacity of the host cell synthesis machinery. In the past, strong expression systems have been developed in order to maximize recombinant gene expression. However, these systems exert an extremely high metabolic burden onto the host cell, which may even lead to cell death.
View Article and Find Full Text PDF