Cornelia de Lange syndrome (CdLS) is a congenital disorder featuring facial dysmorphism, postnatal growth deficits, cognitive disability and upper limb abnormalities. CdLS is genetically heterogeneous, with cases arising from mutation of BRD4, a bromodomain protein that binds and reads acetylated histones. In this study, we have modeled CdLS facial pathology through mouse neural crest cell (NCC)-specific mutation of BRD4 to characterize cellular and molecular function in craniofacial development.
View Article and Find Full Text PDFBackground: Kabuki syndrome is a congenital developmental disorder that is characterized by distinctive facial gestalt and skeletal abnormalities. Although rare, the disorder shares clinical features with several related craniofacial syndromes that manifest from mutations in chromatin-modifying enzymes. Collectively, these clinical studies underscore the crucial, concerted functions of chromatin factors in shaping developmental genome structure and driving cellular transcriptional states.
View Article and Find Full Text PDFPersistent virus infections can cause pathogenesis that is debilitating or lethal. During these infections, virus-specific T cells fail to protect due to weakened antiviral activity or failure to persist. These outcomes are governed by histone modifications, although it is unknown which enzymes contribute to T cell loss or impaired function over time.
View Article and Find Full Text PDFKabuki syndrome (KS) is a congenital craniofacial disorder resulting from mutations in the KMT2D histone methylase (KS1) or the UTX histone demethylase (KS2). With small cohorts of KS2 patients, it is not clear whether differences exist in clinical manifestations relative to KS1. We mutated KMT2D in neural crest cells (NCCs) to study cellular and molecular functions in craniofacial development with respect to UTX.
View Article and Find Full Text PDFDefects in transcriptional regulators of pancreatic exocrine differentiation have been implicated in pancreatic tumorigenesis, but the molecular mechanisms are poorly understood. The locus encoding the transcription factor HNF1A harbors susceptibility variants for pancreatic ductal adenocarcinoma (PDAC), while KDM6A, encoding Lysine-specific demethylase 6A, carries somatic mutations in PDAC. Here, we show that pancreas-specific Hnf1a null mutant transcriptomes phenocopy those of Kdm6a mutations, and both defects synergize with Kras to cause PDAC with sarcomatoid features.
View Article and Find Full Text PDFThe histone H3 lysine 27 (H3K27) demethylase Kdm6b (Jmjd3) can promote cellular differentiation, however its physiological functions in neurons remain to be fully determined. We studied the expression and function of Kdm6b in differentiating granule neurons of the developing postnatal mouse cerebellum. At postnatal day 7, Kdm6b is expressed throughout the layers of the developing cerebellar cortex, but its expression is upregulated in newborn cerebellar granule neurons (CGNs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2017
Kabuki syndrome, a congenital craniofacial disorder, manifests from mutations in an X-linked histone H3 lysine 27 demethylase (UTX/KDM6A) or a H3 lysine 4 methylase (KMT2D). However, the cellular and molecular etiology of histone-modifying enzymes in craniofacial disorders is unknown. We now establish Kabuki syndrome as a neurocristopathy, whereby the majority of clinical features are modeled in mice carrying neural crest (NC) deletion of UTX, including craniofacial dysmorphism, cardiac defects, and postnatal growth retardation.
View Article and Find Full Text PDFEpigenetic changes, including histone methylation, control T cell differentiation and memory formation, though the enzymes that mediate these processes are not clear. We show that UTX, a histone H3 lysine 27 (H3K27) demethylase, supports T follicular helper (Tfh) cell responses that are essential for B cell antibody generation and the resolution of chronic viral infections. Mice with a T cell-specific UTX deletion had fewer Tfh cells, reduced germinal center responses, lacked virus-specific immunoglobulin G (IgG), and were unable to resolve chronic lymphocytic choriomeningitis virus infections.
View Article and Find Full Text PDFThe early mammalian embryo utilizes histone H3 lysine 27 trimethylation (H3K27me3) to maintain essential developmental genes in a repressive chromatin state. As differentiation progresses, H3K27me3 is removed in a distinct fashion to activate lineage specific patterns of developmental gene expression. These rapid changes in early embryonic chromatin environment are thought to be dependent on H3K27 demethylases.
View Article and Find Full Text PDFUTX (KDM6A) and UTY are homologous X and Y chromosome members of the Histone H3 Lysine 27 (H3K27) demethylase gene family. UTX can demethylate H3K27; however, in vitro assays suggest that human UTY has lost enzymatic activity due to sequence divergence. We produced mouse mutations in both Utx and Uty.
View Article and Find Full Text PDFIntraperitoneal injection of the Gram-negative bacterial endotoxin lipopolysaccharide (LPS) elicits a rapid innate immune response. While this systemic inflammatory response can be destructive, tolerable low doses of LPS render the brain transiently resistant to subsequent injuries. However, the mechanism by which microglia respond to LPS stimulation and participate in subsequent neuroprotection has not been documented.
View Article and Find Full Text PDFHeterozygous Twirler (Tw) mice develop obesity and circling behavior associated with malformations of the inner ear, whereas homozygous Tw mice have cleft palate and die shortly after birth. Zeb1 is a zinc finger protein that contributes to mesenchymal cell fate by repression of genes whose expression defines epithelial cell identity. This developmental pathway is disrupted in inner ears of Tw/Tw mice.
View Article and Find Full Text PDFThe assembly of metazoan Sm-class small nuclear ribonucleoproteins (snRNPs) is an elaborate, step-wise process that takes place in multiple subcellular compartments. The initial steps, including formation of the core RNP, are mediated by the survival motor neuron (SMN) protein complex. Loss-of-function mutations in human SMN1 result in a neuromuscular disease called spinal muscular atrophy.
View Article and Find Full Text PDFPreconditioning is a phenomenon in which the brain protects itself against future injury by adapting to low doses of noxious insults. Preconditioning stimuli include ischemia, low doses of endotoxin, hypoxia, hypothermia and hyperthermia, cortical spreading depression, anesthetics, and 3-nitropropionic acid, among others. Understanding of the mechanisms underlying preconditioning has been elusive, but NMDA receptor activation, nitric oxide, inflammatory cytokines, and suppression of the innate immune system appear to have a role.
View Article and Find Full Text PDFMutations in human survival motor neurons 1 (SMN1) cause spinal muscular atrophy (SMA) and are associated with defects in assembly of small nuclear ribonucleoproteins (snRNPs) in vitro. However, the etiological link between snRNPs and SMA is unclear. We have developed a Drosophila melanogaster system to model SMA in vivo.
View Article and Find Full Text PDFCajal bodies (CBs) are nuclear subdomains involved in the biogenesis of several classes of small ribonucleoproteins (RNPs). A number of recent advances highlight progress in the understanding of the organization and dynamics of CB components. For example, a class of small Cajal body-specific (sca) RNPs has been discovered.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2005
Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by loss of spinal motor neurons. The gene encoding the survival of motor neurons (SMN) protein is mutated in >95% of SMA cases. SMN is the central component of a large oligomeric complex, including Gemins2-7, that is necessary and sufficient for the in vivo assembly of Sm proteins onto the small nuclear (sn)RNAs that mediate pre-mRNA splicing.
View Article and Find Full Text PDFCoilin is the signature protein of the Cajal body (CB), a nuclear suborganelle involved in the biogenesis of small nuclear ribonucleoproteins (snRNPs). Newly imported Sm-class snRNPs are thought to traffic through CBs before proceeding to their final nuclear destinations. Loss of coilin function in mice leads to significant viability and fertility problems.
View Article and Find Full Text PDFObjective: Mutations in the fibrillar collagen genes COL11A1 and COL11A2 can cause sensorineural hearing loss associated with Stickler syndrome. There is a correlation of hearing loss severity, onset, progression and affected frequencies with the underlying mutated collagen gene. We sought to determine whether differences in spatial or temporal expression of these genes underlie this correlation, and to identify the cochlear cell populations expressing these genes and the structures likely to be affected by mutations.
View Article and Find Full Text PDFCajal bodies (CBs) are subnuclear domains implicated in small nuclear ribonucleoprotein (snRNP) biogenesis. In most cell types, CBs coincide with nuclear gems, which contain the survival of motor neurons (SMN) complex, an essential snRNP assembly factor. Here, we analyze the exchange kinetics of multiple components of CBs and gems in living cells using photobleaching microscopy.
View Article and Find Full Text PDFWith the advent of high-density DNA marker data sets for the mouse and other model systems, 100 or more genotype are routinely generated from large groups of mice. Issues of the accuracy and reliability of the genotyping are extremely important but often not addressed until genetic analysis is conducted. Simple tests that rely on the robust predictions arising from Mendelian genetics can be made quickly in the molecular laboratory as the data are generated, and require only a spreadsheet program.
View Article and Find Full Text PDFCajal bodies (CBs) are nuclear suborganelles implicated in the post-transcriptional maturation of small nuclear and small nucleolar RNAs. The number of CBs displayed by various cell lines and tissues varies, and factors that control CB numbers within a given cell have yet to be described. In this report, we show that specific regions within the C-terminus of coilin, the CB marker protein, are responsible for regulating the number of nuclear foci.
View Article and Find Full Text PDFCajal bodies (CBs) are nuclear suborganelles involved in biogenesis of small RNAs. Twin structures, called gems, contain high concentrations of the survival motor neurons (SMN) protein complex. CBs and gems often colocalize, and communication between these subdomains is mediated by coilin, the CB marker.
View Article and Find Full Text PDF