5-fluorouracil (5-FU) is a successful and broadly used anti-cancer therapeutic. A major mechanism of action of 5-FU is thought to be through thymidylate synthase (TYMS) inhibition resulting in dTTP depletion and activation of the DNA damage response. This suggests that 5-FU should synergize with other DNA damaging agents.
View Article and Find Full Text PDFCDK4 and CDK6 are kinases with similar sequences that regulate cell cycle progression and are validated targets in the treatment of cancer. Glioblastoma is characterized by a high frequency of CDKN2A/CCND2/CDK4/CDK6 pathway dysregulation, making dual inhibition of CDK4 and CDK6 an attractive therapeutic approach for this disease. Abemaciclib, ribociclib, and palbociclib are approved CDK4/6 inhibitors for the treatment of HR+/HER2- breast cancer, but these drugs are not expected to show strong activity in brain tumors due to poor blood brain barrier penetration.
View Article and Find Full Text PDFChronic inflammation is a major risk factor for colorectal cancer. The p38/MAPKAP Kinase 2 (MK2) kinase axis controls the synthesis of proinflammatory cytokines that mediate both chronic inflammation and tumor progression. Blockade of this pathway has been previously reported to suppress inflammation and to prevent colorectal tumorigenesis in a mouse model of inflammation-driven colorectal cancer, by mechanisms that are still unclear.
View Article and Find Full Text PDFIn normal cells, p53 is activated by DNA damage checkpoint kinases to simultaneously control the G1/S and G2/M cell cycle checkpoints through transcriptional induction of p21(cip1) and Gadd45α. In p53-mutant tumors, cell cycle checkpoints are rewired, leading to dependency on the p38/MK2 pathway to survive DNA-damaging chemotherapy. Here we show that the RNA binding protein hnRNPA0 is the "successor" to p53 for checkpoint control.
View Article and Find Full Text PDFEukaryotic cell division is controlled by cyclin-dependent kinases (CDKs), which require phosphorylation by a CDK-activating kinase (CAK) for full activity. Chemical genetics uncovered requirements for the metazoan CAK Cdk7 in determining cyclin specificity and activation order of Cdk2 and Cdk1 during S and G2 phases. It was unknown if Cdk7 also activates Cdk4 and Cdk6 to promote passage of the restriction (R) point, when continued cell-cycle progression becomes mitogen independent, or if CDK-activating phosphorylation regulates G1 progression.
View Article and Find Full Text PDFThe cyclin-dependent kinases (CDKs) that promote cell-cycle progression are targets for negative regulation by signals from damaged or unreplicated DNA, but also play active roles in response to DNA lesions. The requirement for activity in the face of DNA damage implies that there are mechanisms to insulate certain CDKs from checkpoint inhibition. It remains difficult, however, to assign precise functions to specific CDKs in protecting genomic integrity.
View Article and Find Full Text PDFProgression through the eukaryotic cell division cycle is governed by the activity of cyclin-dependent kinases (CDKs). For a CDK to become active it must (1) bind a positive regulatory subunit (cyclin) and (2) be phosphorylated on its activation (T) loop. In metazoans, multiple CDK catalytic subunits, each with a distinct set of preferred cyclin partners, regulate the cell cycle, but it has been difficult to assign functions to individual CDKs in vivo.
View Article and Find Full Text PDFA family of conserved serine/threonine kinases known as cyclin-dependent kinases (CDKs) drives orderly cell cycle progression in mammalian cells. Prior studies have suggested that CDK2 regulates S-phase entry and progression, and frequently shows increased activity in a wide spectrum of human tumors. Genetic KO/knockdown approaches, however, have suggested that lack of CDK2 protein does not prevent cellular proliferation, both during somatic development in mice as well as in human cancer cell lines.
View Article and Find Full Text PDFMultiple cyclin-dependent kinases (CDKs) control eukaryotic cell division, but assigning specific functions to individual CDKs remains a challenge. During the mammalian cell cycle, Cdk2 forms active complexes before Cdk1, but lack of Cdk2 protein does not block cell-cycle progression. To detect requirements and define functions for Cdk2 activity in human cells when normal expression levels are preserved, and nonphysiologic compensation by other CDKs is prevented, we replaced the wild-type kinase with a version sensitized to specific inhibition by bulky adenine analogs.
View Article and Find Full Text PDFThe cell division cycle can be modelled as a series of quantitative thresholds of cyclin-dependent kinase (CDK) activity. DNA synthesis has a lower threshold requirement for CDK than does entry into mitosis, and mitotic exit and re-setting of replication origins occur upon collapse of CDK activity below both thresholds, so that the simple rise and fall of CDK with each cell cycle might suffice to ensure repeated alternation of chromosome duplication and segregation. Recent experimental dissections of mitotic exit, which have both guided and been informed by computational modelling, suggest a more complicated mechanism, in which unidirectional progression is ensured by systems-level control of CDK function and the balance between mitotic CDK and phosphatase activities.
View Article and Find Full Text PDFEukaryotic cell division is controlled by the activity of cyclin-dependent kinases (CDKs). Cdk1 and Cdk2, which function at different stages of the mammalian cell cycle, both require cyclin-binding and phosphorylation of the activation (T-) loop for full activity, but differ with respect to the order in which the two steps occur in vivo. To form stable complexes with either of its partners-cyclins A and B-Cdk1 must be phosphorylated on its T-loop, but that phosphorylation in turn depends on the presence of cyclin.
View Article and Find Full Text PDFIn metazoans, different cyclin-dependent kinases (CDKs) bind preferred cyclin partners to coordinate cell division. Here, we investigate these preferences in human cells and show that cyclin A assembles with Cdk1 only after complex formation with Cdk2 reaches a plateau during late S and G2 phases. To understand the basis for Cdk2's competitive advantage, despite Cdk1's greater abundance, we dissect their activation pathways by chemical genetics.
View Article and Find Full Text PDFFluorescence lifetime imaging microscopy (FLIM) provides a promising, robust method of detecting molecular interaction not not nots in vivo via fluorescence/Förster resonance energy transfer (FRET), by monitoring the variation of donor fluorescence lifetime, which is insensitive to many artifacts influencing convential intensity-based measurements, e.g. fluorophore concentration, photobleaching, and spectral bleed-through.
View Article and Find Full Text PDFCell division is controlled by cyclin-dependent kinases (CDKs). In metazoans, S phase onset coincides with activation of Cdk2, whereas Cdk1 triggers mitosis. Both Cdk1 and -2 require cyclin binding and T loop phosphorylation for full activity.
View Article and Find Full Text PDF