In the present work, the magneto-mechanical coupling in magneto-active elastomers is investigated from two different modeling perspectives: a micro-continuum and a particle-interaction approach. Since both strategies differ significantly in their basic assumptions and the resolution of the problem under investigation, they are introduced in a concise manner and their capabilities are illustrated by means of representative examples. To motivate the application of these strategies within a hybrid multiscale framework for magneto-active elastomers, their interchangeability is then examined in a systematic comparison of the model predictions with regard to the magneto-deformation of chain-like helical structures in an elastomer surrounding.
View Article and Find Full Text PDFSoft elastic composite materials containing particulate rigid inclusions in a soft elastic matrix are candidates for developing soft actuators or tunable damping devices. The possibility to reversibly drive the rigid inclusions within such a composite together to a close-to-touching state by an external stimulus would offer important benefits. Then, a significant tuning of the mechanical properties could be achieved due to the resulting mechanical hardening.
View Article and Find Full Text PDF