Elucidating chromatin structure in vitro requires resolution below 10 nm to visualize the mononucleosome has been an ongoing challenge. In this work, we achieve sub-10-nm imaging of nucleic acids via spectroscopic intrinsic-contrast photon-localization optical nanoscopy (SICLON) without the use of external labels. SICLON leverages two key innovations: using endogenous nucleotides as the emission source and a custom-made imaging system that can simultaneously record the position and optical spectra of emitting molecules.
View Article and Find Full Text PDFMicrostructural analysis by crystal orientation mapping of bulk functional materials is an essential and routine operation in the engineering of material properties. Far and away the most successfully employed technique, Electron Backscattered Diffraction (EBSD), provides high spatial resolution information at the cost of limited angular resolution and a distorted imaging condition. In this work, we demonstrate a stage-rocked electron channeling approach as a low-cost orientation mapping alternative to EBSD.
View Article and Find Full Text PDFTechnological advances in electron microscopy, particularly improved detectors and aberration correctors, have led to higher throughput and less invasive imaging of materials and biological structures by enhancing signal-to-noise ratios at lower electron exposures. Analytical methods, such as electron energy loss spectroscopy (EELS) and energy dispersive x-ray spectrometry (EDS), have also benefitted and offer a rich set of local elemental and bonding information with nano-or atomic resolution. However, spatially resolved spectrum imaging with EELS and EDS continue to be difficult to scale due to limited detector collection angles or high signal background, requiring hours or even days for full maps.
View Article and Find Full Text PDFChemical fixation is nearly indispensable in the biological sciences, especially in circumstances where cryo-fixation is not applicable. While universally employed for the preservation of cell organization, chemical fixatives often introduce artifacts that can confound identification of true structures. Since biological research is increasingly probing ever-finer details of the cellular architecture, it is critical to understand the nanoscale transformation of the cellular organization due to fixation both systematically and quantitatively.
View Article and Find Full Text PDFEssentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass-density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass-density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction.
View Article and Find Full Text PDFFlexible organic materials possessing useful electrical properties, such as ferroelectricity, are of crucial importance in the engineering of electronic devices. Up until now, however, only ferroelectric polymers have intrinsically met this flexibility requirement, leaving small-molecule organic ferroelectrics with room for improvement. Since both flexibility and ferroelectricity are rare properties on their own, combining them in one crystalline organic material is challenging.
View Article and Find Full Text PDF