Publications by authors named "Karishma Pratt"

Loss of genomic information due to the accumulation of somatic DNA damage has been implicated in aging and neurodegeneration . Somatic mutations in human neurons increase with age , but it is unclear whether this is a cause or a consequence of brain aging. Here, we clarify the role of endogenous, neuronal DNA double-strand breaks (DSBs) in brain aging and neurodegeneration by generating mice with post-developmental inactivation of the classical non-homologous end-joining (C-NHEJ) core factor Xrcc4 in forebrain neurons.

View Article and Find Full Text PDF

Across species, spatial memory declines with age, possibly reflecting altered hippocampal and medial entorhinal cortex (MEC) function. However, the integrity of cellular and network-level spatial coding in aged MEC is unknown. Here, we leveraged electrophysiology to assess MEC function in young, middle-aged, and aged mice navigating virtual environments.

View Article and Find Full Text PDF

Loss of cognitive function with age is devastating. EGL-30/GNAQ and G signaling pathways are highly conserved between C. elegans and mammals, and murine Gnaq is enriched in hippocampal neurons and declines with age.

View Article and Find Full Text PDF

DNA methylation has emerged as a critical modulator of neuronal plasticity and cognitive function. Notwithstanding, the role of enzymes that demethylate DNA remain to be fully explored. Here, we report that loss of ten-eleven translocation methylcytosine dioxygenase 2 (Tet2), which catalyzes oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), in adult neurons enhances cognitive function.

View Article and Find Full Text PDF

Parvalbumin-positive (PV) interneurons play a critical role in maintaining circuit rhythm in the brain, and their reduction is implicated in autism spectrum disorders. Animal studies demonstrate that maternal immune activation (MIA) leads to reduced PV interneurons in the somatosensory cortex and autism-like behaviors. However, the underlying molecular mechanisms remain largely unknown.

View Article and Find Full Text PDF

Remyelination declines in the aging central nervous system due to oligodendrocyte precursor cell (OPC) dysfunction. In the latest issue of Cell Stem Cell, Neumann et al. (2019) demonstrate that aged OPCs are amenable to functional rejuvenation by systemic interventions involving alternate-day fasting or treatment with the fasting mimetic metformin.

View Article and Find Full Text PDF

Mounting evidence in animal models indicates potential for rejuvenation of cellular and cognitive functions in the aging brain. However, the ability to utilize this potential is predicated on identifying molecular targets that reverse the effects of aging in vulnerable regions of the brain, such as the hippocampus. The dynamic post-translational modification O-linked N-Acetylglucosamine (O-GlcNAc) has emerged as an attractive target for regulating aging-specific synaptic alterations as well as neurodegeneration.

View Article and Find Full Text PDF

Ectopic expression of combinations of transcription factors (TFs) can drive direct lineage conversion, thereby reprogramming a somatic cell's identity. To determine the molecular mechanisms by which Gata4, Mef2c, and Tbx5 (GMT) induce conversion from a cardiac fibroblast toward an induced cardiomyocyte, we performed comprehensive transcriptomic, DNA-occupancy, and epigenomic interrogation throughout the reprogramming process. Integration of these datasets identified new TFs involved in cardiac reprogramming and revealed context-specific roles for GMT, including the ability of Mef2c and Tbx5 to independently promote chromatin remodeling at previously inaccessible sites.

View Article and Find Full Text PDF

Mutation of highly conserved residues in transcription factors may affect protein-protein or protein-DNA interactions, leading to gene network dysregulation and human disease. Human mutations in GATA4, a cardiogenic transcription factor, cause cardiac septal defects and cardiomyopathy. Here, iPS-derived cardiomyocytes from subjects with a heterozygous GATA4-G296S missense mutation showed impaired contractility, calcium handling, and metabolic activity.

View Article and Find Full Text PDF

Background: Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells in situ represents a promising strategy for cardiac regeneration. A combination of 3 cardiac transcription factors, Gata4, Mef2c, and Tbx5 (GMT), can convert fibroblasts into induced cardiomyocyte-like cells, albeit with low efficiency in vitro.

Methods: We screened 5500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming.

View Article and Find Full Text PDF