Publications by authors named "Karine Vallee"

The objective of the study was to examine the effects of a 16-week walking program on food group preferences and energy balance of sedentary, moderately obese (body mass index, 29-35 kg/m(2)), postmenopausal Caucasian women, aged 60 ± 5 years old. One hundred and fifty-six volunteers were subjected to 3 sessions/week of 45 min of walking at 60% of heart rate reserve. Total energy intake (TEI) and food group preferences (3-day dietary record), total energy expenditure (TEE, 3-day physical activity diary), cardiorespiratory fitness (2-km walking test), anthropometry, and body composition (bioelectrical impedance) were measured before and after walking.

View Article and Find Full Text PDF

We have shown previously that human intestinal epithelial cell survival and anoikis are distinctively regulated according to the state of differentiation. Here we analyzed the roles of protein kinase B/Akt isoforms in such differentiation state distinctions. Anoikis was induced in undifferentiated and differentiated enterocytes by inhibition of focal adhesion kinase (Fak; pharmacologic inhibition or overexpression of dominant-negative mutants) or beta1 integrins (antibody blocking) or by maintaining cells in suspension.

View Article and Find Full Text PDF

To investigate the mechanisms responsible for survival and apoptosis/anoikis in normal human intestinal epithelial crypt cells, we analyzed the roles of various signaling pathways and cell adhesion on the expression of six Bcl-2 homologs (Bcl-2, Bcl-XL, Mcl-1, Bax, Bak, Bad) in the well established HIEC-6 cell model. Pharmacological inhibitors and/or dominant-negative constructs were used to inhibit focal adhesion kinase (Fak) and p38 isoforms, as well as the phosphatidylinositol 3'-kinase (PI3-K)/Akt-1 and mitogen-activated protein kinase [MAPK] kinase (MEK)/extracellular regulated kinases (Erk) pathways. Cell adhesion was disrupted by antibody-inhibition of integrin binding or forced cell suspension.

View Article and Find Full Text PDF

We have shown previously that the promotion of myofiber survival by the basement membrane component merosin (laminin-2 [alpha2beta1gamma1]/laminin-4 [alpha2beta2gamma1]) is dependent on the activity of the tyrosine kinase Fyn, whereas myofiber anoikis induced by merosin deficiency is dependent on the stress-activated protein kinase p38alpha. To further understand such merosin-driven survival signaling, we analyzed the expression of five Bcl-2 homologs (Bcl-2, Bcl-X(L), Bax, Bak, Bad) and one non-homologous associated molecule (Bag-1) in normal and merosin-deficient myotubes, with or without pharmacological inhibitors for Fyn and p38. Herein, we report that (1) merosin deficiency induces anoikis and causes decreased Bcl-2, Bcl-X(L), and Bag-1 levels, increased Bax and Bak levels, and decreased Bad phosphorylation; (2) Bcl-2, Bcl-X(L), Bag-1, and Bad phosphorylation are also decreased in anoikis-dying, Fyn-inhibited myotubes; (3) the inhibition of p38alpha in Fyn-inhibited and/or merosin-deficient myotubes protects against anoikis and increases Bcl-2 levels above normal, in addition to restoring Bad phosphorylation and Bag-1 levels to normal; (4) the overexpression of merosin in deficient myotubes also rescues from anoikis and increases Bcl-2 levels and Bad phosphorylation above normal, in addition to restoring Bcl-X(L), Bag-1, Bax, and Bak levels to normal; and (5) Bcl-2 overexpression is sufficient to rescue merosin-deficient myotubes from anoikis, even though the expression/phosphorylation levels of the other homologs analyzed are not restored to normal.

View Article and Find Full Text PDF