Publications by authors named "Karine Valentijn"

Revealing the ultrastructure and function of fluorescently labeled cellular components by correlative light and electron microscopy (CLEM) facilitates the study of structure-function relationships in complex biological processes. Given the diversity of available fluorescent tags, light microscopy is ideal for monitoring dynamic cellular processes, while electron microscopy reveals the morphological context of structures at high resolution. Endothelial cells lining the blood vessel wall contain storage organelles called Weibel-Palade bodies (WPBs), which contain tubules of densely packed helical spirals of the blood coagulation protein Von Willebrand factor (VWF).

View Article and Find Full Text PDF

Von Willebrand disease (VWD) is a bleeding disorder characterized by reduced plasma von Willebrand factor (VWF) levels or functionally abnormal VWF. Low VWF plasma levels in VWD patients are the result of mutations in the VWF gene that lead to decreased synthesis, impaired secretion, increased clearance or a combination thereof. However, expression studies of variants located in the A domains of VWF are limited.

View Article and Find Full Text PDF

Vascular endothelial cells contain unique rod-shaped secretory organelles, called Weibel-Palade bodies (WPBs), which contain the hemostatic protein von Willebrand factor (VWF) and a cocktail of angiogenic and inflammatory mediators. We have shown that the Rab27A effector synaptotagmin-like protein 4-a (Slp4-a) plays a critical role in regulating hormone-evoked WPB exocytosis. Using a nonbiased proteomic screen for targets for Slp4-a, we now identify syntaxin-binding protein 1 (STXBP1) and syntaxin-2 and -3 as endogenous Slp4-a binding partners in endothelial cells.

View Article and Find Full Text PDF

Patients with von Willebrand disease (VWD) are often heterozygous for a missense mutation in the von Willebrand factor (VWF) gene. Investigating the pathogenic features of VWF mutations in cells directly derived from patients has been challenging. Here, we have used blood outgrowth endothelial cells (BOECs) isolated from human peripheral blood to analyze the storage and secretion of VWF.

View Article and Find Full Text PDF

Vascular endothelial cells contain unique storage organelles, designated Weibel-Palade bodies (WPBs), that deliver inflammatory and hemostatic mediators to the vascular lumen in response to agonists like thrombin and vasopressin. The main component of WPBs is von Willebrand factor (VWF), a multimeric glycoprotein crucial for platelet plug formation. In addition to VWF, several other components are known to be stored in WPBs, like osteoprotegerin, monocyte chemoattractant protein-1 and angiopoetin-2 (Ang-2).

View Article and Find Full Text PDF

Background: Mutations of cysteine residues in von Willebrand factor are known to reduce the storage and secretion of this factor, thus leading to reduced antigen levels. However, one cysteine mutation, p.Cys2773Ser, has been found in patients with type 2A(IID) von Willebrand's disease who have normal plasma levels of von Willebrand factor.

View Article and Find Full Text PDF

In endothelial cells, von Willebrand factor (VWF) multimers are packaged into tubules that direct biogenesis of elongated Weibel-Palade bodies (WPBs). WPB release results in unfurling of VWF tubules and assembly into strings that serve to recruit platelets. By confocal microscopy, we have previously observed a rounded morphology of WPBs in blood outgrowth endothelial cells transduced to express factor VIII (FVIII).

View Article and Find Full Text PDF

Several missense mutations in the von Willebrand Factor (VWF) gene of von Willebrand disease (VWD) patients have been shown to cause impaired constitutive secretion and intracellular retention of VWF. However, the effects of those mutations on the intracellular storage in Weibel-Palade bodies (WPBs) of endothelial cells and regulated secretion of VWF remain unknown. We demonstrate, by expression of quantitative VWF mutants in HEK293 cells, that four missense mutations in the D3 and CK-domain of VWF diminished the storage in pseudo-WPBs, and led to retention of VWF within the endoplasmic reticulum (ER).

View Article and Find Full Text PDF

Weibel-Palade bodies (WPBs) are elongated secretory organelles specific to endothelial cells that contain von Willebrand factor (VWF) and a variety of other proteins that contribute to inflammation, angiogenesis, and tissue repair. The remarkable architecture of WPBs is because of the unique properties of their major constituent VWF. VWF is stored inside WPBs as tubules, but on its release, forms strikingly long strings that arrest bleeding by recruiting blood platelets to sites of vascular injury.

View Article and Find Full Text PDF

Regulated exocytosis of Weibel-Palade bodies (WPBs) is a pivotal mechanism via which vascular endothelial cells initiate repair in response to injury and inflammation. Several pathways have been proposed to enable differential release of bioactive molecules from WPBs under different pathophysiologic conditions. Due to the complexity, many aspects of WPB biogenesis and exocytosis are still poorly understood.

View Article and Find Full Text PDF

Cryo-electron tomography (cryo-ET) allows for the visualization of biological material in a close-to-native state, in three dimensions and with nanometer scale resolution. However, due to the low signal-to-noise ratio inherent to imaging of the radiation-sensitive frozen-hydrated samples, it appears often times impossible to localize structures within heterogeneous samples. Because a major potential for cryo-ET is thereby left unused, we set out to combine cryo-ET with cryo-fluorescence microscopy (cryo-FM), in order to facilitate the search for structures of interest.

View Article and Find Full Text PDF

The insect lipophorin receptor (LpR), an LDL receptor (LDLR) homologue that is expressed during restricted periods of insect development, binds and endocytoses high-density lipophorin (HDLp). However, in contrast to LDL, HDLp is not lysosomally degraded, but recycled in a transferrin-like manner, leaving a function of receptor-mediated uptake of HDLp to be uncovered. Since a hallmark of circulatory HDLp is its ability to function as a reusable shuttle that selectively loads and unloads lipids at target tissues without being endocytosed or degraded, circulatory HDLp can exist in several forms with respect to lipid loading.

View Article and Find Full Text PDF