Publications by authors named "Karine Salin"

AbstractPeriods of hypoxia are extremely common in aquatic systems and are predicted to have enduring impacts on aquatic life. Mitochondrial metabolic responses are important for animal performance during hypoxia, but tissue-specific responses and time needed for mitochondria to adjust remain unclear. Here, we investigate how mitochondrial metabolism responds to hypoxia (50% air saturation) over a prolonged period (15-21 wk) in sea bass ().

View Article and Find Full Text PDF

Developing animals are increasingly exposed to elevated temperatures as global temperatures rise as a result of climate change. Vertebrates can be affected by elevated temperatures during development directly, and indirectly through maternal effects (e.g.

View Article and Find Full Text PDF

Aim: Thermal sensitivity of cellular metabolism is crucial for animal physiology and survival under climate change. Despite recent efforts, effects of multigenerational exposure to temperature on the metabolic functioning remain poorly understood. We aimed at determining whether multigenerational exposure to temperature modulate the mitochondrial respiratory response of Medaka fish.

View Article and Find Full Text PDF

A fundamental issue in the metabolic field is whether it is possible to understand underlying mechanisms that characterize individual variation. Whole-animal performance relies on mitochondrial function as it produces energy for cellular processes. However, our lack of longitudinal measures to evaluate how mitochondrial function can change within and among individuals and with environmental context makes it difficult to assess individual variation in mitochondrial traits.

View Article and Find Full Text PDF

In intertidal zones, species such as sessile shellfish exhibit extended phenotypic plasticity to face rapid environmental changes, but whether frequent exposure to intertidal limits of the distribution range impose physiological costs for the animal remains elusive. Here, we explored how phenotypic plasticity varied along foreshore range at multiple organization levels, from molecular to cellular and whole organism acclimatization, in the Pacific oyster (Crassostrea gigas). We exposed 7-month-old individuals for up to 16 months to three foreshore levels covering the vertical range for this species, representing 20, 50 and 80% of the time spent submerged monthly.

View Article and Find Full Text PDF

Researchers from diverse disciplines, including organismal and cellular physiology, sports science, human nutrition, evolution and ecology, have sought to understand the causes and consequences of the surprising variation in metabolic rate found among and within individual animals of the same species. Research in this area has been hampered by differences in approach, terminology and methodology, and the context in which measurements are made. Recent advances provide important opportunities to identify and address the key questions in the field.

View Article and Find Full Text PDF

Mitochondrial metabolism varies significantly between individuals of the same species and can influence animal performance, such as growth. However, growth rate is usually determined before the mitochondrial assay. The hypothesis that natural variation in mitochondrial metabolic traits is linked to differences in both previous and upcoming growth remains untested.

View Article and Find Full Text PDF

Aerobic metabolism of aquatic ectotherms is highly sensitive to fluctuating climates. Many mitochondrial traits exhibit phenotypic plasticity in response to acute variations in temperature and oxygen availability. These responses are critical for understanding the effects of environmental variations on aquatic ectotherms' performance.

View Article and Find Full Text PDF

It has been assumed that at the whole organismal level, the mitochondrial reactive oxygen species (ROS) production is proportional to the oxygen consumption. Recently, a number of researchers have challenged this assumption, based on the observation that the ROS production per unit oxygen consumed in the resting state of mitochondrial respiration is much higher than that in the active state. Here, we develop a simple model to investigate the validity of the assumption and the challenge of it.

View Article and Find Full Text PDF

Biologists have long appreciated the critical role that energy turnover plays in understanding variation in performance and fitness among individuals. Whole-organism metabolic studies have provided key insights into fundamental ecological and evolutionary processes. However, constraints operating at subcellular levels, such as those operating within the mitochondria, can also play important roles in optimizing metabolism over different energetic demands and time scales.

View Article and Find Full Text PDF

An important, but underappreciated, consequence of climate change is the reduction in crucial nutrient production at the base of the marine food chain: the long-chain omega-3 highly unsaturated fatty acids (n-3 HUFA). This can have dramatic consequences on consumers, such as fish as they have limited capacity to synthesise n-3 HUFA de novo. The n-3 HUFA, such as docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3), are critical for the structure and function of all biological membranes.

View Article and Find Full Text PDF

The physiological causes of intraspecific differences in fitness components such as growth rate are currently a source of debate. It has been suggested that differences in energy metabolism may drive variation in growth, but it remains unclear whether covariation between growth rates and energy metabolism is: (i) a result of certain individuals acquiring and consequently allocating more resources to growth, and/or is (ii) determined by variation in the efficiency with which those resources are transformed into growth. Studies of individually housed animals under standardized nutritional conditions can help shed light on this debate.

View Article and Find Full Text PDF

Many animals experience periods of food shortage in their natural environment. It has been hypothesised that the metabolic responses of animals to naturally-occurring periods of food deprivation may have long-term negative impacts on their subsequent life-history.In particular, reductions in energy requirements in response to fasting may help preserve limited resources but potentially come at a cost of increased oxidative stress.

View Article and Find Full Text PDF

Animals display tremendous variation in their rates of growth, reproductive output, and longevity. While the physiological and molecular mechanisms that underlie this variation remain poorly understood, the performance of the mitochondrion has emerged as a key player. Mitochondria not only impact the performance of eukaryotes via their capacity to produce ATP, but they also play a role in producing heat and reactive oxygen species and function as a major signaling hub for the cell.

View Article and Find Full Text PDF

Mitochondrial efficiency is typically taken to represent an animal's capacity to convert its resources into ATP. However, the term mitochondrial efficiency, as currently used in the literature, can be calculated as either the respiratory control ratio, RCR (ratio of mitochondrial respiration supporting ATP synthesis to that required to offset the proton leak) or as the amount of ATP generated per unit of oxygen consumed, ATP/O ratio. The question of how flexibility in mitochondrial energy properties (i.

View Article and Find Full Text PDF

Organisms can modify their surrounding environment, but whether these changes are large enough to feed back and alter their evolutionary trajectories is not well understood, particularly in wild populations. Here we show that nutrient pulses from decomposing Atlantic salmon (Salmo salar) parents alter selection pressures on their offspring with important consequences for their phenotypic and genetic diversity. We found a strong survival advantage to larger eggs and faster juvenile metabolic rates in streams lacking carcasses but not in streams containing this parental nutrient input.

View Article and Find Full Text PDF

Metabolic rate has been linked to growth, reproduction, and survival at the individual level and is thought to have far reaching consequences for the ecology and evolution of organisms. However, metabolic rates must be consistent (i.e.

View Article and Find Full Text PDF

Metabolic rates reflect the energetic cost of living but exhibit remarkable variation among conspecifics, partly as a result of the constraints imposed by environmental conditions. Metabolic rates are sensitive to changes in temperature and oxygen availability, but effects of food availability, particularly on maximum metabolic rates, are not well understood. Here, we show in brown trout (Salmo trutta) that maximum metabolic rates are immutable but minimum metabolic rates increase as a positive function of food availability.

View Article and Find Full Text PDF

In recent years evolutionary ecologists have become increasingly interested in the effects of reactive oxygen species (ROS) on the life-histories of animals. ROS levels have mostly been inferred indirectly due to the limitations of estimating ROS from in vitro methods. However, measuring ROS (hydrogen peroxide, HO) content in vivo is now possible using the MitoB probe.

View Article and Find Full Text PDF

The use of tissue homogenate has greatly aided the study of the functioning of mitochondria. However, the amount of ATP produced per oxygen molecule consumed, that is, the effective P/O ratio, has never been measured directly in tissue homogenate. Here we combine and refine existing methods previously used in permeabilized cells and isolated mitochondria to simultaneously measure mitochondrial ATP production (JATP) and oxygen consumption (JO) in tissue homogenate.

View Article and Find Full Text PDF

Standard metabolic rate (SMR) and maximum metabolic rate (MMR) typically vary two- or threefold among conspecifics, with both traits assumed to significantly impact fitness. However, the underlying mechanisms that determine such intraspecific variation are not well understood. We examined the influence of mitochondrial properties on intraspecific variation in SMR and MMR and hypothesized that if SMR supports the cost of maintaining the metabolic machinery required for MMR, then the mitochondrial properties underlying these traits should be shared.

View Article and Find Full Text PDF

Dietary restriction (DR) extends lifespan and healthspan in many species, but precisely how it elicits its beneficial effects is unclear. We investigated the impact of DR on mitochondrial function within liver and skeletal muscle of female ILSXISS mice that exhibit strain-specific variation in lifespan under 40% DR. Strains TejJ89 (lifespan increased under DR), TejJ48 (lifespan unaffected by DR) and TejJ114 (lifespan decreased under DR) were studied following 10 months of 40% DR (13 months of age).

View Article and Find Full Text PDF

Sexual coercion of females by males is widespread across sexually reproducing species. It stems from a conflict of interest over reproduction and exerts selective pressure on both sexes. For females, there is often a significant energetic cost of exposure to male sexually coercive behaviours.

View Article and Find Full Text PDF

Energy stores are essential for the overwinter survival of many temperate and polar animals, but individuals within a species often differ in how quickly they deplete their reserves. These disparities in overwinter performance may be explained by differences in their physiological and behavioral flexibility in response to food scarcity. However, little is known about whether individuals exhibit correlated or independent changes in these traits, and how these phenotypic changes collectively affect their winter energy use.

View Article and Find Full Text PDF

Animals, especially ectotherms, are highly sensitive to the temperature of their surrounding environment. Extremely high temperature, for example, induces a decline of average performance of conspecifics within a population, but individual heterogeneity in the ability to cope with elevating temperatures has rarely been studied. Here, we examined inter-individual variation in feeding ability and consequent growth rate of juvenile brown trout Salmo trutta acclimated to a high temperature (19°C), and investigated the relationship between these metrics of whole-animal performances and among-individual variation in mitochondrial respiration capacity.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionoir20qrjpa7o3koun4t292g1742in0qq): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once