Identifying natural barriers to movements of hosts associated with infectious diseases is essential for developing effective control strategies. Raccoon rabies variant (RRV) is a zoonosis of concern for humans because its main vector, the raccoon (Procyon lotor), is found near residential areas. In Québec, Canada, all cases of RRV found in raccoons since 2006 were detected on the eastern side of the Richelieu River, suggesting that this river acts as a barrier to gene flow and thus the potential for RRV to spread.
View Article and Find Full Text PDFSafe and reliable capture techniques for wild animals are important for ecologic studies and management operations. We assessed the efficiency of ketamine-medetomidine (K:M) injection and reversal with atipamezole. We anesthetized 67 raccoons (Procyon lotor; 34 males, 33 females) 103 times (individuals captured between one and five times) from April 2009-October 2010 in Mont-Orford Provincial Park, Quebec, Canada.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
January 2011
Soins Pediatr Pueric
April 2009
Background & Aims: Cystathionine beta-synthase (CBS) deficiency causes severe hyperhomocysteinemia, which confers diverse clinical manifestations, notably liver disease. To investigate this aspect of hyperhomocysteinemia, we performed a thorough investigation of liver pathology in CBS-deficient mice, a murine model of severe hyperhomocysteinemia.
Methods: The degree of liver injury and inflammation was assessed by histologic examination, by measurements of products of lipid peroxidation, and by formation of carbonyl groups on protein as a measure for the occurrence of protein oxidation.
Anat Rec A Discov Mol Cell Evol Biol
January 2005
Cystathionine beta synthase (CBS) is a crucial regulator of plasma concentrations of homocysteine. Severe hyperhomocysteinemia due to CBS deficiency confers diverse clinical manifestations, notably characteristic skeletal abnormalities. To investigate this aspect of hyperhomocysteinemia, we analyzed the skeleton of CBS-deficient mice, a murine model of severe hyperhomocysteinemia.
View Article and Find Full Text PDFAnat Rec A Discov Mol Cell Evol Biol
October 2004
Cystathionine beta synthase (CBS) is a crucial regulator of plasma concentrations of homocysteine. Severe hyperhomocysteinemia due to CBS deficiency confers diverse clinical manifestations. Patients with severe hyperhomocysteinemia have fine hair and thin skin, but it is unclear whether these changes are related to CBS deficiency or are coincidental.
View Article and Find Full Text PDFDeficiency in cystathionine beta synthase (CBS) leads to high plasma homocysteine concentrations and causes hyperhomocysteinemia, a common risk factor for vascular disease, stroke and possibly neurodegenerative diseases. Various neuronal diseases have been associated with hyperhomocysteinemia, but the molecular mechanisms of homocysteine toxicity are unknown. We investigated the pathways involved in the pathological process, by analyzing differential gene expression in neuronal tissues.
View Article and Find Full Text PDFCystathionine beta-synthase (CBS) deficiency causes severe hyperhomocysteinemia and other signs of homocystinuria syndrome, in particular a premature atherosclerosis with multiple thrombosis. However, the molecular mechanisms by which homocysteine could interfere with normal cell function are poorly understood in a whole organ like the liver, which is central to the catabolism of homocysteine. We used a combination of differential display and cDNA arrays to analyze differential gene expression in association with elevated hepatic homocysteine levels in CBS-deficient mice, a murine model of hyperhomocysteinemia.
View Article and Find Full Text PDFHyperhomocysteinemia, caused by a lack of cystathionine beta synthase (CBS), leads to elevated plasma concentrations of homocysteine. This is a common risk factor for atherosclerosis, stroke, and possibly neurodegenerative diseases. However, the mechanisms that link hyperhomocysteinemia due to CBS deficiency to these diseases are still unknown.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
June 2003
Unlabelled: Atrial fibrillation (AF) is accompanied by various changes in ion channels that cause atrial electrophysiological remodeling. The enzyme Na,K-ATPase is also a major cellular mechanism for the regulation of ion homeostasis. During AF, Na,K-ATPase may be regulated by synthesis of its alpha- and beta-subunits as well as changes in membrane fluidity.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2002
Disturbances of Na,K-ATPase activity are implicated in the pathophysiology of cerebral ischemia. Previous experiments have shown that EGb 761 protects NaK-ATPase activity against one hour of cerebral ischemia. In the brain however, the 3 isoenzymes responsible for Na,K-ATPase activity may be differentially affected by various times of ischemia.
View Article and Find Full Text PDF