Publications by authors named "Karine M David"

Herkogamy is the spatial separation of anthers and stigmas within complete flowers, and is a key floral trait that promotes outcrossing in many angiosperms. The degree of separation between pollen-producing anthers and receptive stigmas has been shown to influence rates of self-pollination amongst plants, with a reduction in herkogamy increasing rates of successful selfing in self-compatible species. Self-pollination is becoming a critical issue in horticultural crops grown in environments where biotic pollinators are limited, absent, or difficult to utilise.

View Article and Find Full Text PDF

The Rosaceae family has striking phenotypic diversity and high syntenic conservation. Gillenia trifoliata is sister species to the Maleae tribe of apple and ~1000 other species. Gillenia has many putative ancestral features, such as herb/sub-shrub habit, dry fruit-bearing and nine base chromosomes.

View Article and Find Full Text PDF

Background: Transcriptomic studies combined with a well annotated genome have laid the foundations for new understanding of molecular processes. Tools which visualise gene expression patterns have further added to these resources. The manual annotation of the Actinidia chinensis (kiwifruit) genome has resulted in a high quality set of 33,044 genes.

View Article and Find Full Text PDF

Background: Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models.

View Article and Find Full Text PDF

During glycolysis, yeast generates methylglyoxal (MG), a toxic metabolite that affects growth. Detoxification can occur when glyoxylase I (GLO1) and glyoxylase II (GLO2) convert MG to lactic acid. We have identified an additional, previously unrecognized role for GLO1 in sulfur assimilation in the yeast Saccharomyces cerevisiae.

View Article and Find Full Text PDF

Background: Ripening in tomato is predominantly controlled by ethylene, whilst in fruit such as grape, it is predominantly controlled by other hormones. The ripening response of many kiwifruit (Actinidia) species is atypical. The majority of ripening-associated fruit starch hydrolysis, colour change and softening occurs in the apparent absence of ethylene production (Phase 1 ripening) whilst Phase 2 ripening requires autocatalytic ethylene production and is associated with further softening and an increase in aroma volatiles.

View Article and Find Full Text PDF

Background And Aims: Fruit ripening is an important developmental trait in fleshy fruits, making the fruit palatable for seed dispersers. In some fruit species, there is a strong association between auxin concentrations and fruit ripening. We investigated the relationship between auxin concentrations and the onset of ethylene-related ripening in Malus × domestica (apples) at both the hormone and transcriptome levels.

View Article and Find Full Text PDF

Flowering plants utilize different floral structures to develop flesh tissue in fruits. Here we show that suppression of the homeologous SEPALLATA1/2-like genes MADS8 and MADS9 in the fleshy fruit apple (Malus x domestica) leads to sepaloid petals and greatly reduced fruit flesh. Immunolabelling of cell-wall epitopes and differential staining showed that the developing hypanthium (from which the apple flesh develops) of MADS8/9-suppressed apple flowers lacks a tissue layer, and the remaining flesh tissue of fully developed apples has considerably smaller cells.

View Article and Find Full Text PDF

Background: Auxin is an important phytohormone for fleshy fruit development, having been shown to be involved in the initial signal for fertilisation, fruit size through the control of cell division and cell expansion, and ripening related events. There is considerable knowledge of auxin-related genes, mostly from work in model species. With the apple genome now available, it is possible to carry out genomics studies on auxin-related genes to identify genes that may play roles in specific stages of apple fruit development.

View Article and Find Full Text PDF

Background: With the advent of high throughput genomic tools, it is now possible to undertake detailed molecular studies of individual species outside traditional model organisms. Combined with a good understanding of physiological processes, these tools allow researchers to explore natural diversity, giving a better understanding of biological mechanisms. Here a detailed study of fruit development from anthesis through to fruit senescence is presented for a non-model organism, kiwifruit, Actinidia chinensis ('Hort16A').

View Article and Find Full Text PDF

The phytohormone auxin has been known for >50 years to be required for entry into the cell cycle. Despite the critical effects exerted by auxin on the control of cell division, the molecular mechanism by which auxin controls this pathway is poorly understood, and how auxin is perceived upstream of any change in the cell cycle is unknown. Auxin Binding Protein 1 (ABP1) is considered to be a candidate auxin receptor, triggering early modification of ion fluxes across the plasma membrane in response to auxin.

View Article and Find Full Text PDF

GIGANTEA (GI) is a key regulator of photoperiodic flowering in Arabidopsis and encodes a protein with no domains of known biochemical function. Expression of GI mRNA is controlled by the circadian clock, but GI protein accumulation has not been previously investigated. We generated plants that produced functional epitope-tagged GI to enable us to track the protein through the daily cycle.

View Article and Find Full Text PDF