Persistence of an immunosuppressive state plays a role in septic patient morbidity and late mortality. Both innate and adaptive pathways are impaired, pointing toward the need for immune interventions targeting both arms of the immune system. We developed a virotherapy using the nonpropagative modified vaccinia virus Ankara (MVA), which harbors the intrinsic capacity to stimulate innate immunity, to deliver IL-7, a potent activator of adaptive immunity.
View Article and Find Full Text PDF17β-Estradiol (E2) suppresses the development of experimental autoimmune encephalomyelitis (EAE) through estrogen receptor (ER) α, yet the cellular targets remain elusive. We have used an adoptive transfer model of myelin oligodendrocyte glycoprotein-specific CD4 T cells from 2D2 TCR transgenic mice. We show that in the recipient mice, ERα expression in bystander CD4 T cells, rather than in cognate 2D2 T cells, is required for the inhibition of Th17 cell differentiation by E2.
View Article and Find Full Text PDFPre-clinical models mimicking persistent hepatitis B virus (HBV) expression are seldom, do not capture all features of a human chronic infection and due to their complexity, are subject to variability. We report a meta-analysis of seven experiments performed with TG1050, an HBV-targeted immunotherapeutic, in an HBV-persistent mouse model based on the transduction of mice by an adeno-associated virus coding for an infectious HBV genome (AAV-HBV). To mimic the clinical diversity seen in HBV chronically infected patients, AAV-HBV transduced mice displaying variable HBsAg levels were treated with TG1050.
View Article and Find Full Text PDFA growing body of evidence from basic and clinical studies supports the therapeutic potential of estrogens in multiple sclerosis (MS), originating from the well-established reduction in relapse rates observed among women with MS during pregnancy. The biological effects of estrogens are mediated by estrogen receptors (ERα and ERβ). Estrogens or selective ER-agonists have been shown to exert potent neuroprotective or anti-inflammatory effects in experimental autoimmune encephalomyelitis (EAE), the mouse model of MS.
View Article and Find Full Text PDFEstrogen treatment exerts a protective effect on experimental autoimmune encephalomyelitis (EAE) and is under clinical trial for multiple sclerosis therapy. Estrogens have been suspected to protect from CNS autoimmunity through their capacity to exert anti-inflammatory as well as neuroprotective effects. Despite the obvious impacts of estrogens on the pathophysiology of multiple sclerosis and EAE, the dominant cellular target that orchestrates the anti-inflammatory effect of 17β-estradiol (E2) in EAE is still ill defined.
View Article and Find Full Text PDFSex hormones influence immune responses and the development of autoimmune diseases including MS and its animal model, EAE. Although it has been previously reported that ovariectomy could worsen EAE, the mechanisms implicated in the protective action of endogenous ovarian hormones have not been addressed. In this report, we now show that endogenous estrogens limit EAE development and CNS inflammation in adult female mice through estrogen receptor α expression in the host non-hematopoietic tissues.
View Article and Find Full Text PDF17Beta-estradiol (E2) has been shown to promote the expression of inflammatory mediators by LPS-activated tissue resident macrophages through estrogen receptor alpha (ERalpha) signaling. However, it remained to be determined whether E2 similarly influences macrophages effector functions under inflammatory conditions in vivo, and whether this action of E2 resulted from a direct effect on macrophages. We show in this study that chronic E2 administration to ovariectomized mice significantly increased both cytokine (IL-1beta, IL-6, and TNF-alpha) and inducible NO synthase mRNA abundance in thioglycolate (TGC)-elicited macrophages.
View Article and Find Full Text PDF