Publications by authors named "Karine Frenal"

The tachyzoite is a singled-cell obligate intracellular parasite responsible for the acute phase of toxoplasmosis. This polarized cell exhibits an apical complex, a hallmark of the phylum Apicomplexa, essential for motility, invasion, and egress from the host cell. Located on the opposite end of the cell is the basal complex, an elaborated cytoskeletal structure that also plays critical roles in the lytic cycle of the parasite, being involved in motility, cell division, constriction and cytokinesis, as well as intravacuolar cell-cell communication.

View Article and Find Full Text PDF

is a eukaryotic parasite that has evolved a stage called tachyzoite which multiplies in host cells by producing two daughter cells internally. These nascent tachyzoites bud off their mother and repeat the division process until the expanding progenies escape to settle and multiply in other host cells. Over these intra- and extra-cellular phases, the tachyzoite maintains an essential apicobasal polarity that emerges through a unique bidirectional budding process of the elongating cells.

View Article and Find Full Text PDF

The phylum of Apicomplexa groups obligate intracellular parasites that exhibit unique classes of unconventional myosin motors. These parasites also encode a limited repertoire of actins, actin-like proteins, actin-binding proteins and nucleators of filamentous actin (F-actin) that display atypical properties. In the last decade, significant progress has been made to visualize F-actin and to unravel the functional contribution of actomyosin systems in the biology of Toxoplasma and Plasmodium, the most genetically-tractable members of the phylum.

View Article and Find Full Text PDF

The phylum Apicomplexa includes a number of significant human pathogens like Toxoplasma gondii and Plasmodium species. These obligate intracellular parasites possess a membranous structure, the inner membrane complex (IMC), composed of flattened vesicles apposed to the plasma membrane. Numerous proteins associated with the IMC are anchored via a lipid post-translational modification termed palmitoylation.

View Article and Find Full Text PDF

To efficiently enter host cells, apicomplexan parasites such as Toxoplasma gondii rely on an apical complex composed of tubulin-based structures as well as two sets of secretory organelles named micronemes and rhoptries. The trafficking and docking of these organelles to the apical pole of the parasite is crucial for the discharge of their contents. Here, we describe two proteins typically associated with microtubules, Centrin 2 (CEN2) and Dynein Light Chain 8a (DLC8a), that are required for efficient host cell invasion.

View Article and Find Full Text PDF

Invasion and egress are two key steps in the lytic cycle of Apicomplexa that are governed by the sequential discharge of proteins from two apical secretory organelles called micronemes and rhoptries. In Toxoplasma gondii, the biogenesis of these specialized organelles depends on the post Golgi trafficking machinery, forming an endosomal-like compartment (ELC) resembling endomembrane systems found in eukaryotes. In this study, we have characterized four phylogenetically related Transporter Facilitator Proteins (TFPs) conserved among the apicomplexans.

View Article and Find Full Text PDF

Protozoan parasites have developed elaborate motility systems that facilitate infection and dissemination. For example, amoebae use actin-rich membrane extensions called pseudopodia, whereas Kinetoplastida are propelled by microtubule-containing flagella. By contrast, the motile and invasive stages of the Apicomplexa - a phylum that contains the important human pathogens Plasmodium falciparum (which causes malaria) and Toxoplasma gondii (which causes toxoplasmosis) - have a unique machinery called the glideosome, which is composed of an actomyosin system that underlies the plasma membrane.

View Article and Find Full Text PDF

The obligate intracellular parasite Toxoplasma gondii possesses a repertoire of 11 myosins. Three class XIV motors participate in motility, invasion and egress, whereas the class XXII myosin F is implicated in organelle positioning and inheritance of the apicoplast. Here we provide evidence that TgUNC acts as a chaperone dedicated to the folding, assembly and function of all Toxoplasma myosins.

View Article and Find Full Text PDF

Many members of the phylum of Apicomplexa have adopted an obligate intracellular life style and critically depend on active invasion and egress from the infected cells to complete their lytic cycle. Toxoplasma gondii belongs to the coccidian subgroup of the Apicomplexa, and as such, the invasive tachyzoite contains an organelle termed the conoid at its extreme apex. This motile organelle consists of a unique polymer of tubulin fibres and protrudes in both gliding and invading parasites.

View Article and Find Full Text PDF

The glideosome is an actomyosin-based machinery that powers motility in Apicomplexa and participates in host cell invasion and egress from infected cells. The central component of the glideosome, myosin A (MyoA), is a motor recruited at the pellicle by the acylated gliding-associated protein GAP45. In Toxoplasma gondii, GAP45 also contributes to the cohesion of the pellicle, composed of the inner membrane complex (IMC) and the plasma membrane, during motor traction.

View Article and Find Full Text PDF

Members of the phylum Apicomplexa possess a highly conserved molecular motor complex anchored in the parasite pellicle and associated with gliding motility, invasion and egress from infected cells. This machinery, called the glideosome, is structured around the acylated gliding-associated protein GAP45 that recruits the motor complex composed of myosin A and two associated myosin light chains (TgMLC1 and TgELC1). This motor is presumably firmly anchored to the inner membrane complex underneath the plasma membrane via an interaction with two integral membrane proteins, GAP50 and GAP40.

View Article and Find Full Text PDF

Post-translational modifications are refined, rapidly responsive and powerful ways to modulate protein function. Among post-translational modifications, acylation is now emerging as a widespread modification exploited by eukaryotes, bacteria and viruses to control biological processes. Protein palmitoylation involves the attachment of palmitic acid, also known as hexadecanoic acid, to cysteine residues of integral and peripheral membrane proteins and increases their affinity for membranes.

View Article and Find Full Text PDF

Protozoan parasites belonging to the phylum Apicomplexa are of considerable medical and veterinary significance. These obligate intracellular parasites use a unique form of locomotion to traverse biological barriers and actively invade in and egress from host cells. An actin-myosin-based complex named "glideosome" drives this unusual substrate-dependent motility, which is essential for the establishment of the infection.

View Article and Find Full Text PDF

The advent of techniques to study palmitoylation on a whole proteome scale has revealed that it is an important reversible modification that plays a role in regulating multiple biological processes. Palmitoylation can control the affinity of a protein for lipid membranes, which allows it to impact protein trafficking, stability, folding, signalling and interactions. The publication of the palmitome of the schizont stage of Plasmodium falciparum implicated a role for palmitoylation in host cell invasion, protein export and organelle biogenesis.

View Article and Find Full Text PDF

Ca(2+) contributes to a myriad of important cellular processes in all organisms, including the apicomplexans, Plasmodium and Toxoplasma. Due to its varied and essential roles, free Ca(2+) is tightly regulated by complex mechanisms. These mechanisms are therefore of interest as putative drug targets.

View Article and Find Full Text PDF

Toxoplasma gondii possesses 11 rather atypical myosin heavy chains. The only myosin light chain described to date is MLC1, associated with myosin A, and contributing to gliding motility. In this study, we examined the repertoire of calmodulin-like proteins in Apicomplexans, identified six putative myosin light chains and determined their subcellular localization in T.

View Article and Find Full Text PDF

The glideosome of apicomplexan parasites is an actin- and myosin-based machine located at the pellicle, between the plasma membrane (PM) and inner membrane complex (IMC), that powers parasite motility, migration, and host cell invasion and egress. It is composed of myosin A, its light chain MLC1, and two gliding-associated proteins, GAP50 and GAP45. We identify GAP40, a polytopic protein of the IMC, as an additional glideosome component and show that GAP45 is anchored to the PM and IMC via its N- and C-terminal extremities, respectively.

View Article and Find Full Text PDF

The phylum Apicomplexa includes a large and diverse group of obligate intracellular parasites that rely on actomyosin-based motility to migrate, enter host cells, and egress from infected cells. To ensure their intracellular survival and replication, the apicomplexans have evolved sophisticated strategies for subversion of the host cytoskeleton. Given the properties in common between the host and parasite cytoskeleton, dissecting their individual contribution to the establishment of parasitic infection has been challenging.

View Article and Find Full Text PDF

The parasite Toxoplasma gondii expresses a 55 kDa protein or TgDRE that belongs to a novel family of proteins characterized by the presence of three domains, a human splicing factor 45-like motif (SF), a glycine-rich motif (G-patch), and a RNA recognition motif (RRM). The two latter domains are mainly known as RNA-binding domains, and their presence in TgDRE, whose partial DNA repair function was demonstrated, suggests that the protein could also be involved in the RNA metabolism. In this work, we characterized the structure and function of the different domains by using single or multidomain proteins to define their putative role.

View Article and Find Full Text PDF

The gamma-KTx-type scorpion toxins specific for K+ channels were found to interact with ERG channels on the turret region, while alpha-KTx3.2 Agitoxin-2 binds to the pore region of the Shaker K+ channel, and alpha-KTx5.3 BmP05 binds to the intermediate region of the small-conductance calcium-activated K-channel (SK(Ca)).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: