The Neuronal ceroid lipofuscinoses (NCLs) are a group of recessive disorders of childhood with overlapping symptoms including vision loss, ataxia, cognitive regression and premature death. 14 different genes have been linked to NCLs (CLN1-CLN14), but the functions of the proteins encoded by the majority of these genes have not been fully elucidated. Mutations in the CLN5 gene are responsible for the Finnish variant late-infantile form of NCL (Finnish vLINCL).
View Article and Find Full Text PDFSortilin is a transmembrane domain protein that has been implicated in the sorting of prosaposin and other soluble cargo from the Golgi to the lysosomal compartment. While the majority of the receptor is recycled back to the Golgi from endosomes, it is known that upon successive rounds of transport, a proportion of sortilin is degraded in lysosomes. Recently, it was shown that sortilin is palmitoylated and that this post-translational modification prevents its degradation and enables sortilin to efficiently traffic back to the Golgi.
View Article and Find Full Text PDFMutations in the gene encoding CLN5 are the cause of Finnish variant late infantile Neuronal Ceroid Lipofuscinosis (NCL), and the gene encoding CLN5 is 1 of 10 genes (encoding CLN1 to CLN9 and cathepsin D) whose germ line mutations result in a group of recessive disorders of childhood. Although CLN5 localizes to the lysosomal compartment, its function remains unknown. We have uncovered an interaction between CLN5 and sortilin, the lysosomal sorting receptor.
View Article and Find Full Text PDFOvarian follicle development is a process regulated by various endocrine, paracrine and autocrine factors that act coordinately to promote follicle growth. However, the vast majority of follicles does not reach the pre-ovulatory stage but instead, undergo atresia by apoptosis. We have recently described a role for the somatic hyaluronidases (Hyal-1, Hyal-2, and Hyal-3) in ovarian follicular atresia and induction of granulosa cell apoptosis.
View Article and Find Full Text PDFSorting from the Golgi apparatus requires the recruitment of cytosolic coat proteins to package cargo into trafficking vesicles. An important early step in the formation of trafficking vesicles is the activation of Arf1 by the guanine nucleotide exchange factor GBF1. To activate Arf1, GBF1 must be recruited to and bound to Golgi membranes, a process that requires Rab1b.
View Article and Find Full Text PDFFor the efficient trafficking of lysosomal proteins, the cationic-dependent and -independent mannose 6-phosphate receptors and sortilin must bind cargo in the Golgi apparatus, be packaged into clathrin-coated trafficking vesicles and traffic to the endosomes. Once in the endosomes, the receptors release their cargo into the endosomal lumen and recycle back to the Golgi for another round of trafficking, a process that requires retromer. In this study, we demonstrate that palmitoylation is required for the efficient retrograde trafficking of sortilin, and the cationic-independent mannose 6-phosphate as palmitoylation-deficient receptors remain trapped in the endosomes.
View Article and Find Full Text PDFDuring ovarian folliculogenesis, the vast majority of follicles will undergo atresia by apoptosis, allowing a few dominant follicles to mature. Mammalian hyaluronidases comprise a family of six to seven enzymes sharing the same catalytic domain responsible for hyaluronan hydrolysis. Interestingly, some of these enzymes have been shown to induce apoptosis.
View Article and Find Full Text PDF