BACKGROUNDMosaic and consensus HIV-1 immunogens provide two distinct approaches to elicit greater breadth of coverage against globally circulating HIV-1 and have shown improved immunologic breadth in nonhuman primate models.METHODSThis double-blind randomized trial enrolled 105 healthy HIV-uninfected adults who received 3 doses of either a trivalent global mosaic, a group M consensus (CON-S), or a natural clade B (Nat-B) gp160 env DNA vaccine followed by 2 doses of a heterologous modified vaccinia Ankara-vectored HIV-1 vaccine or placebo. We performed prespecified blinded immunogenicity analyses at day 70 and day 238 after the first immunization.
View Article and Find Full Text PDFDetection methods that do not require nucleic acid amplification are advantageous for viral diagnostics due to their rapid results. These platforms could provide information for both accurate diagnoses and pandemic surveillance. Influenza virus is prone to pandemic-inducing genetic mutations, so there is a need to apply these detection platforms to influenza diagnostics.
View Article and Find Full Text PDFEliciting HIV-1-specific broadly neutralizing antibodies (bNAbs) remains a challenge for vaccine development, and the potential of passively delivered bNAbs for prophylaxis and therapeutics is being explored. We used neutralization data from four large virus panels to comprehensively map viral signatures associated with bNAb sensitivity, including amino acids, hypervariable region characteristics, and clade effects across four different classes of bNAbs. The bNAb signatures defined for the variable loop 2 (V2) epitope region of HIV-1 Env were then employed to inform immunogen design in a proof-of-concept exploration of signature-based epitope targeted (SET) vaccines.
View Article and Find Full Text PDFDespite extensive genetic diversity of HIV-1 in chronic infection, a single or few maternal virus variants become the founders of an infant's infection. These transmitted/founder (T/F) variants are of particular interest, as a maternal or infant HIV vaccine should raise envelope (Env) specific IgG responses capable of blocking this group of viruses. However, the maternal or infant factors that contribute to selection of infant T/F viruses are not well understood.
View Article and Find Full Text PDFEpigraph is an efficient graph-based algorithm for designing vaccine antigens to optimize potential T-cell epitope (PTE) coverage. Epigraph vaccine antigens are functionally similar to Mosaic vaccines, which have demonstrated effectiveness in preliminary HIV non-human primate studies. In contrast to the Mosaic algorithm, Epigraph is substantially faster, and in restricted cases, provides a mathematically optimal solution.
View Article and Find Full Text PDFThe Ebola outbreak of 2013-15 infected more than 28 000 people and claimed more lives than all previous filovirus outbreaks combined. Governmental agencies, clinical teams, and the world scientific community pulled together in a multifaceted response ranging from prevention and disease control, to evaluating vaccines and therapeutics in human trials. As this epidemic is finally coming to a close, refocusing on long-term prevention strategies becomes paramount.
View Article and Find Full Text PDFCATNAP (Compile, Analyze and Tally NAb Panels) is a new web server at Los Alamos HIV Database, created to respond to the newest advances in HIV neutralizing antibody research. It is a comprehensive platform focusing on neutralizing antibody potencies in conjunction with viral sequences. CATNAP integrates neutralization and sequence data from published studies, and allows users to analyze that data for each HIV Envelope protein sequence position and each antibody.
View Article and Find Full Text PDFUnlabelled: The sequence diversity of human immunodeficiency virus type 1 (HIV-1) presents a formidable challenge to the generation of an HIV-1 vaccine. One strategy to address such sequence diversity and to improve the magnitude of neutralizing antibodies (NAbs) is to utilize multivalent mixtures of HIV-1 envelope (Env) immunogens. Here we report the generation and characterization of three novel, acute clade C HIV-1 Env gp140 trimers (459C, 405C, and 939C), each with unique antigenic properties.
View Article and Find Full Text PDFThe characterization of host immune responses to human immunodeficiency virus (HIV) in HIV controllers and individuals with high exposure but seronegativity to HIV (HESN) is needed to guide the development of effective preventive and therapeutic vaccine candidates. However, several technical hurdles severely limit the definition of an effective virus-specific T-cell response. By using a toggle-peptide approach, which takes HIV sequence diversity into account, and a novel, boosted cytokine staining/flow cytometry strategy, we here describe new patterns of T-cell responses to HIV that would be missed by standard assays.
View Article and Find Full Text PDFRifampicin resistance, a defining attribute of multidrug-resistant tuberculosis, is conferred by mutations in the β subunit of RNA polymerase. Sequencing of rifampicin-resistant (RIF-R) clinical isolates of Mycobacterium tuberculosis revealed, in addition to RIF-R mutations, enrichment of potential compensatory mutations around the double-psi β-barrel domain of the β' subunit comprising the catalytic site and the exit tunnel for newly synthesized RNA. Sequential introduction of the resistance allele followed by the compensatory allele in isogenic Mycobacterium smegmatis showed that these mutations respectively caused and compensated a starvation enhanced growth defect by altering RNA polymerase activity.
View Article and Find Full Text PDFDespite improved hepatitis C virus (HCV) treatments, vaccines remain an effective and economic option for curtailing the epidemic. Mosaic protein HCV genotype 1 vaccine candidates designed to address HCV diversity were immunogenic in mice. They elicited stronger T-cell responses to NS3-NS4a and E1-E2 proteins than did natural strains, as assessed with vaccine-matched peptides.
View Article and Find Full Text PDFWe report the rational design and in vivo testing of mosaic proteins for a polyvalent pan-filoviral vaccine using a computational strategy designed for the Human Immunodeficiency Virus type 1 (HIV-1) but also appropriate for Hepatitis C virus (HCV) and potentially other diverse viruses. Mosaics are sets of artificial recombinant proteins that are based on natural proteins. The recombinants are computationally selected using a genetic algorithm to optimize the coverage of potential cytotoxic T lymphocyte (CTL) epitopes.
View Article and Find Full Text PDFThe emergence of whole genome sequencing (WGS) technologies as primary research tools has allowed for the detection of genetic diversity in Mycobacterium tuberculosis (Mtb) with unprecedented resolution. WGS has been used to address a broad range of topics, including the dynamics of evolution, transmission and treatment. Here, we have analyzed 55 publically available genomes to reconstruct the phylogeny of Mtb, and we have addressed complications that arise during the analysis of publically available WGS data.
View Article and Find Full Text PDFImmunological control of hepatitis C virus (HCV) is possible and is probably mediated by host T-cell responses, but the genetic diversity of the virus poses a major challenge to vaccine development. We considered monovalent and polyvalent candidates for an HCV vaccine, including natural, consensus and synthetic 'mosaic' sequence cocktails. Mosaic vaccine reagents were designed using a computational approach first applied to and demonstrated experimentally for human immunodeficiency virus type 1 (HIV-Delta).
View Article and Find Full Text PDFUnlabelled: We present a suite of on-line tools to design candidate vaccine proteins, and to assess antigen potential, using coverage of k-mers (as proxies for potential T-cell epitopes) as a metric. The vaccine design tool uses the recently published 'mosaic' method to generate protein sequences optimized for coverage of high-frequency k-mers; the coverage-assessment tools facilitate coverage comparisons for any potential antigens. To demonstrate these tools, we designed mosaic protein sets for B-clade HIV-1 Gag, Pol and Nef, and compared them to antigens used in a recent human vaccine trial.
View Article and Find Full Text PDFIn a study of 114 epidemiologically linked Zambian transmission pairs, we evaluated the impact of human leukocyte antigen class I (HLA-I)-associated amino acid polymorphisms, presumed to reflect cytotoxic T lymphocyte (CTL) escape in Gag and Nef of the virus transmitted from the chronically infected donor, on the plasma viral load (VL) in matched recipients 6 mo after infection. CTL escape mutations in Gag and Nef were seen in the donors, which were subsequently transmitted to recipients, largely unchanged soon after infection. We observed a significant correlation between the number of Gag escape mutations targeted by specific HLA-B allele-restricted CTLs and reduced VLs in the recipients.
View Article and Find Full Text PDFBackground: Differential protein targeting by HIV-specific CD8 T cells is associated with disparate plasma viral loads; however, it is unclear if the quality of these responses differs depending upon the specificity of the targeted epitopes.
Methods: We examined HIV-specific CD8 T-cell responses in HIV-infected adolescents carrying either an HLA class I allele associated with a favorable prognosis (HLA-B*57) or an allele associated with usual disease progression (HLA-B*35 or HLA-B*53) using interferon-gamma ELISpot and ICS assays.
Results: In an interferon-gamma ELISpot assay, p24 was the dominant protein targeted by B*57 carriers while responses to Nef dominated in B*35 or B*53 positive carriers.
The hepatitis C virus (HCV) is a significant public health threat worldwide. The virus is highly variable and evolves rapidly, making it an elusive target for the immune system and for vaccine and drug design. Presently, approximately 50 000 HCV sequences have been published.
View Article and Find Full Text PDFThe accurate identification of HIV-specific T cell responses is important for determining the relationship between immune response, viral control, and disease progression. HIV-specific immune responses are usually measured using peptide sets based on consensus sequences, which frequently miss responses to regions where test set and infecting virus differ. In this study, we report the design of a peptide test set with significantly increased coverage of HIV sequence diversity by including alternative amino acids at variable positions during the peptide synthesis step.
View Article and Find Full Text PDFUnlabelled: Outcomes of infection with hepatitis C virus (HCV) vary widely, from asymptomatic clearance to chronic infection, leading to complications that include fibrosis, cirrhosis, hepatocellular carcinoma, and liver failure. Previous studies have reported statistical associations between human leukocyte antigen (HLA) heterozygosity and favorable outcomes of infection with either hepatitis B virus (HBV) or human immunodeficiency virus (HIV) (the "heterozygote advantage"). To investigate whether HLA zygosity is associated with outcome of HCV infection, we used data from the United States Organ Procurement and Transplantation Network database of 52,435 liver transplant recipients from 1995 through 2005.
View Article and Find Full Text PDFPromiscuous binding of T helper epitopes to MHC class II molecules has been well established, but few examples of promiscuous class I-restricted epitopes exist. To address the extent of promiscuity of HLA class I peptides, responses to 242 well-defined viral epitopes were tested in 100 subjects regardless of the individuals' HLA type. Surprisingly, half of all detected responses were seen in the absence of the originally reported restricting HLA class I allele, and only 3% of epitopes were recognized exclusively in the presence of their original allele.
View Article and Find Full Text PDFThe hepatitis C virus (HCV) resource at Los Alamos (hcv.lanl.gov) provides access to multiple databases: one containing annotated sequences and the other a repository of immunogenic epitopes.
View Article and Find Full Text PDFEscape from T cell-mediated immune responses affects the ongoing evolution of rapidly evolving viruses such as HIV. By applying statistical approaches that account for phylogenetic relationships among viral sequences, we show that viral lineage effects rather than immune escape often explain apparent human leukocyte antigen (HLA)-mediated immune-escape mutations defined by older analysis methods. Phylogenetically informed methods identified immune-susceptible locations with greatly improved accuracy, and the associations we identified with these methods were experimentally validated.
View Article and Find Full Text PDF