Phosphatase and tensin homolog (PTEN) is involved in a number of different cellular processes including metabolism, apoptosis, cell proliferation and survival. It is a redox-sensitive dual-specificity protein phosphatase that acts as a tumor suppressor by negatively regulating the PI3K/Akt pathway. While direct evidence of redox regulation of PTEN downstream signaling has been reported, the effect of PTEN redox status on its protein-protein interactions is poorly understood.
View Article and Find Full Text PDFOxidative post-translational modifications (oxPTMs) can alter the function of proteins, and are important in the redox regulation of cell behaviour. The most informative technique to detect and locate oxPTMs within proteins is mass spectrometry (MS). However, proteomic MS data are usually searched against theoretical databases using statistical search engines, and the occurrence of unspecified or multiple modifications, or other unexpected features, can lead to failure to detect the modifications and erroneous identifications of oxPTMs.
View Article and Find Full Text PDFUnlabelled: Development of mass spectrometry techniques to detect protein oxidation, which contributes to signalling and inflammation, is important. Label-free approaches have the advantage of reduced sample manipulation, but are challenging in complex samples owing to undirected analysis of large data sets using statistical search engines. To identify oxidised proteins in biological samples, we previously developed a targeted approach involving precursor ion scanning for diagnostic MS(3) ions from oxidised residues.
View Article and Find Full Text PDFBackground: It is widely believed that laboratory strains of Escherichia coli, including those used for industrial production of proteins, do not secrete proteins to the extracellular milieu.
Results: Here, we report the development of a generalised module, based on an E. coli autotransporter secretion system, for the production of extracellular recombinant proteins.
Salmonella enterica is a major cause of morbidity worldwide and mortality in children and immunocompromised individuals in sub-Saharan Africa. Outer membrane proteins of Salmonella are of significance because they are at the interface between the pathogen and the host, they can contribute to adherence, colonization, and virulence, and they are frequently targets of antibody-mediated immunity. In this study, the properties of SadA, a purported trimeric autotransporter adhesin of Salmonella enterica serovar Typhimurium, were examined.
View Article and Find Full Text PDFAutotransporter biogenesis is dependent upon BamA, a central component of the β-barrel assembly machinery (BAM) complex. In this report, we detail the role of the other BAM components (BamB-E). We identify the importance of BamD in autotransporter biogenesis and show that BamB, BamC, and BamE are not required.
View Article and Find Full Text PDFThe plasmid-encoded toxin, Pet, a prototypical member of the serine protease autotransporters of the Enterobacteriaceae, possesses an unusually long signal peptide, which can be divided into five regions termed N1 (charged), H1 (hydrophobic), N2, H2 and C (cleavage site) domains. The N1 and H1 regions correspond to a conserved N-terminal extension previously designated the extended signal peptide region (ESPR), while the N2, H2 and C regions resemble typical Sec-dependent signal sequences and exhibit considerable sequence variability. We have shown previously that the ESPR directs Sec-dependent, post-translational translocation of Pet across the bacterial inner membrane.
View Article and Find Full Text PDFThe dI component of Rhodospirillum rubrum transhydrogenase has a single Trp residue (Trp(72)), which has distinctive optical properties, including short-wavelength fluorescence emission with clear vibrational fine structure, and long-lived, well-resolved phosphorescence emission. We have made a set of mutant dI proteins in which residues contacting Trp(72) are conservatively substituted. The room-temperature fluorescence-emission spectra of our three Met(97) mutants are blue shifted by approximately 4 nm, giving them a shorter-wavelength emission than any other protein described in the literature, including azurin from Pseudomonas aeruginosa.
View Article and Find Full Text PDF