Publications by authors named "Karina Serban"

Background: Alpha-1 antitrypsin deficiency (AATD) is an inherited disease, the common variant caused by a Pi*Z mutation in the SERPINA1 gene. Pi*Z AAT increases the risk of pulmonary emphysema and liver disease. Berberine (BBR) is a nature dietary supplement and herbal remedy.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is characterized by nonresolving inflammation fueled by breach in the endothelial barrier and leukocyte recruitment into the airspaces. Among the ligand-receptor axes that control leukocyte recruitment, the full-length fractalkine ligand (CX3CL1)-receptor (CX3CR1) ensures homeostatic endothelial-leukocyte interactions. Cigarette smoke (CS) exposure and respiratory pathogens increase expression of endothelial sheddases, such as a-disintegrin-and-metalloproteinase-domain 17 (ADAM17, TACE), inhibited by the anti-protease α-1 antitrypsin (AAT).

View Article and Find Full Text PDF

is a nontuberculous mycobacterium emerging as a significant pathogen for individuals with chronic lung disease, including cystic fibrosis and chronic obstructive pulmonary disease. Current therapeutics have poor efficacy. New strategies of bacterial control based on host defenses are appealing, but anti-mycobacterial immune mechanisms are poorly understood and are complicated by the appearance of smooth and rough morphotypes with distinct host responses.

View Article and Find Full Text PDF

The pathogenesis of the marked pulmonary microvasculature injury, a distinguishing feature of COVID-19 acute respiratory distress syndrome (COVID-ARDS), remains unclear. Implicated in the pathophysiology of diverse diseases characterized by endothelial damage, including ARDS and ischemic cardiovascular disease, ceramide and in particular palmitoyl ceramide (C16:0-ceramide) may be involved in the microvascular injury in COVID-19. Using deidentified plasma and lung samples from COVID-19 patients, ceramide profiling by mass spectrometry was performed.

View Article and Find Full Text PDF

α1-Antitrypsin (AAT), a serine protease inhibitor, is the third most abundant protein in plasma. Although the best-known function of AAT is irreversible inhibition of elastase, AAT is an acute-phase reactant and is increasingly recognized to have a panoply of other functions, including as an anti-inflammatory mediator and a host-protective molecule against various pathogens. Although a canonical receptor for AAT has not been identified, AAT can be internalized into the cytoplasm and is known to affect gene regulation.

View Article and Find Full Text PDF

Resolution of inflammation is an active process that is tightly regulated to achieve repair and tissue homeostasis. In the absence of resolution, persistent inflammation underlies the pathogenesis of chronic lung disease such as chronic obstructive pulmonary disease (COPD) with recurrent exacerbations. Over the course of inflammation, macrophage programming transitions from pro-inflammatory to pro-resolving, which is in part regulated by the nuclear receptor Peroxisome Proliferator-Activated Receptor γ (PPARγ).

View Article and Find Full Text PDF

Primarily caused by chronic cigarette smoking (CS), emphysema is characterized by loss of alveolar cells comprising lung units involved in gas exchange and inflammation that culminate in airspace enlargement. Dysregulation of sphingolipid metabolism with increases of ceramide relative to sphingosine-1 phosphate (S1P) signaling has been shown to cause lung cell apoptosis and is emerging as a potential therapeutic target in emphysema. We sought to determine the impact of augmenting S1P signaling via S1P receptor 1 (S1P1) in a mouse model of CS-induced emphysema.

View Article and Find Full Text PDF

A 56-year-old man presented to the pulmonary clinic with dyspnea and hypoxemia on exertion. He was an avid biker and skier who had noticed a significant decrease in high-level physical activity over the past 3 years. He reported dyspnea, desaturations at altitudes higher than 9,000 feet, dry cough, tachycardia, and palpitations with exercise.

View Article and Find Full Text PDF

Deficiency of ASM (acid sphingomyelinase) causes the lysosomal storage Niemann-Pick disease (NPD). Patients with NPD type B may develop progressive interstitial lung disease with frequent respiratory infections. Although several investigations using the ASM-deficient (ASMKO) mouse NPD model revealed inflammation and foamy macrophages, there is little insight into the pathogenesis of NPD-associated lung disease.

View Article and Find Full Text PDF

Studies of chronic obstructive pulmonary disease (COPD) using animal models and patient plasma indicate dysregulation of sphingolipid metabolism, but data in COPD lungs are sparse. Mass spectrometric and immunostaining measurements of lungs from 69 COPD, 16 smokers without COPD and 13 subjects with interstitial lung disease identified decoupling of lung ceramide and sphingosine-1 phosphate (S1P) levels and decreased sphingosine kinase-1 (SphK1) activity in COPD. The correlation of ceramide abundance in distal COPD lungs with apoptosis and the inverse correlation between SphK1 activity and presence of emphysema suggest that disruption of ceramide-to-S1P metabolism is an important determinant of emphysema phenotype in COPD.

View Article and Find Full Text PDF

COPD is a clinically heterogeneous syndrome characterized by injury to airways, airspaces, and lung vasculature and usually caused by tobacco smoke and/or air pollution exposure. COPD is also independently associated with nonpulmonary comorbidities (eg, cardiovascular disease) and malignancies (eg, GI, bladder), suggesting a role for systemic injury. Since not all those with exposure develop COPD, there has been a search for plasma and lung biomarkers that confer increased cross-sectional and longitudinal risk.

View Article and Find Full Text PDF

Background: Patients with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demonstrate high rates of co-infection with respiratory viruses, including influenza A (IAV), suggesting pathogenic interactions.

Methods: We investigated how IAV may increase the risk of COVID-19 lung disease, focusing on the receptor angiotensin-converting enzyme (ACE)2 and the protease TMPRSS2, which cooperate in the intracellular uptake of SARS-CoV-2.

Results: We found, using single-cell RNA sequencing of distal human nondiseased lung homogenates, that at baseline, ACE2 is minimally expressed in basal, goblet, ciliated and secretory epithelial cells populating small airways.

View Article and Find Full Text PDF

The loss of pulmonary endothelial cells in emphysema is associated with increased lung ceramide. Ceramide perturbations may cause adaptive alterations in other bioactive sphingolipids, with pathogenic implications. We previously reported a negative correlation between emphysema and circulating glycosphingolipids (GSLs).

View Article and Find Full Text PDF

Epithelial-fibroblast interactions are thought to be very important in the adult lung in response to injury, but the specifics of these interactions are not well defined. We developed coculture systems to define the interactions of adult human alveolar epithelial cells with lung fibroblasts. Alveolar type II cells cultured on floating collagen gels reduced the expression of type 1 collagen (COL1A1) and α-smooth muscle actin (ACTA2) in fibroblasts.

View Article and Find Full Text PDF

A better understanding of the pathogenesis of distinct chronic obstructive pulmonary disease (COPD) phenotypes will improve diagnostic and therapeutic options for this common disease. We present evidence that sphingolipids such as ceramides are involved in the emphysema pathogenesis. Whereas distinct ceramide species cause cell death by apoptosis and necroptosis, cell adaptation leads to accumulation of other sphingolipid metabolites that extend cell survival by triggering autophagy.

View Article and Find Full Text PDF

Elastase and chronic cigarette smoke exposure animal models are commonly used to study lung morphologic and functional changes associated with emphysema-like airspace enlargement in various animal species. This chapter describes the rationale for using these two models to study mechanisms of COPD pathogenesis and provides protocols for their implementation. E-cigarettes are an emerging health concern and may also contribute to lung disease.

View Article and Find Full Text PDF

Background: Several inflammatory lung diseases display abundant presence of hyaluronic acid (HA) bound to heavy chains (HC) of serum protein inter-alpha-inhibitor (IαI) in the extracellular matrix. The HC-HA modification is critical to neutrophil sequestration in liver sinusoids and to survival during experimental lipopolysaccharide (LPS)-induced sepsis. Therefore, the covalent HC-HA binding, which is exclusively mediated by tumor necrosis factor α (TNFα)-stimulated-gene-6 (TSG-6), may play an important role in the onset or the resolution of lung inflammation in acute lung injury (ALI) induced by respiratory infection.

View Article and Find Full Text PDF

Cigarette smoking (CS), the main risk factor for COPD (chronic obstructive pulmonary disease) in developed countries, decreases alveolar macrophages (AM) clearance of both apoptotic cells and bacterial pathogens. This global deficit of AM engulfment may explain why active smokers have worse outcomes of COPD exacerbations, episodes characterized by airway infection and inflammation that carry high morbidity and healthcare cost. When administered as intravenous supplementation, the acute phase-reactant alpha-1 antitrypsin (A1AT) reduces the severity of COPD exacerbations in A1AT deficient (AATD) individuals and of bacterial pneumonia in murine models, but the effect of A1AT on AM scavenging functions has not been reported.

View Article and Find Full Text PDF

Animal models of disease help accelerate the translation of basic science discoveries to the bedside, because they permit experimental interrogation of mechanisms at relatively high throughput, while accounting for the complexity of an intact organism. From the groundbreaking observation of emphysema-like alveolar destruction after direct instillation of elastase in the lungs to the more clinically relevant model of airspace enlargement induced by chronic exposure to cigarette smoke, animal models have advanced our understanding of alpha-1 antitrypsin (AAT) function. Experimental in vivo models that, at least in part, replicate clinical human phenotypes facilitate the translation of mechanistic findings into individuals with chronic obstructive pulmonary disease and with AAT deficiency.

View Article and Find Full Text PDF

Circulating endothelial microparticles (EMPs) are emerging as biomarkers of chronic obstructive pulmonary disease (COPD) in individuals exposed to cigarette smoke (CS), but their mechanism of release and function remain unknown. We assessed biochemical and functional characteristics of EMPs and circulating microparticles (cMPs) released by CS. CS exposure was sufficient to increase microparticle levels in plasma of humans and mice, and in supernatants of primary human lung microvascular endothelial cells.

View Article and Find Full Text PDF