The potential energy surface of the H(2)/S(2) system has been characterized at the full valence MRCI+Davidson/aug-cc-pV(Q+d)Z level of theory using geometries optimized at the MRCI/aug-cc-pVTZ level. The analysis includes channels occurring entirely on either the singlet or the triplet surface as well as those involving an intersystem crossing. RRKM-based multiple well calculations allow the prediction of rate constants in the temperature range of 300-2000 K between 0.
View Article and Find Full Text PDFThe reaction of SH + O2 has been characterized using multireference methods, with geometries and vibrational frequencies determined at the CASSCF/cc-pVTZ level and single-point energies calculated at the MRCI/aug-cc-pV(Q+d)Z level. The dominant product channels are found to be SO + OH and HSO + O. Whereas the formation of SO + OH has a barrier of approximately 81 kJ mol-1, it is energetically more favorable than the formation of HSO + O, which is barrierless beyond the endothermicity of approximately 89 kJ mol-1 at 0 K.
View Article and Find Full Text PDFThe reaction of H2S + S has been characterized at the multireference configuration interaction level with the geometries optimized using the aug-cc-pVTZ basis set and the single-point energy calculated using the aug-cc-pV(Q+d)Z basis set. As in the analogous reaction of H2 + S, the presence of an intersystem crossing enables products (SH + SH) to be formed on the singlet surface through S insertion, which bypasses the triplet barrier (19.1 kJ mol-1 relative to SH + SH) of the H abstraction route.
View Article and Find Full Text PDFJ Phys Chem A
September 2005
Quantum chemical methods at the Gaussian-2 and -3 levels of theory have been used to investigate the reactions between H(2)S, SO(2), and S(2)O such as might occur in the front-end furnace of the Claus process. The direct reaction between H(2)S and SO(2) occurs via a 5-centered transition state with an initial barrier of approximately 135 kJ mol(-1) and an overall barrier of approximately 153 kJ mol(-1) to produce S(2)O and H(2)O. We indicate approximate values here because there are a number of isomers in the reaction pathway that have barriers slightly different from those quoted.
View Article and Find Full Text PDFThe reactions of a ketone surface oxide group have been studied on two forms of the zigzag edge and the armchair edge of a model char using density functional theory at the B3LYP/6-31G(d) level of theory. Rearrangement and surface migration reactions were found to occur much more rapidly than desorption reactions on both the zigzag and armchair edges. A number of desorption pathways characterized here go some way toward explaining the experimentally observed broad activation energy profile for CO desorption.
View Article and Find Full Text PDFQuantum chemical calculations were carried out to study the interaction of hydrogen sulfide with molecular oxygen in the gas phase. The basic mechanism, the rates of reaction, and the potential energy surface were calculated. Isomers and transition states that connect the reactants with intermediates and products of reaction were identified using the G2 method and B3LYP/6-311+G(3df,2p) functional.
View Article and Find Full Text PDFThe use of a quinone functionality in the linkage unit of laterally bridged oligoporphyrins as a switch for controlling electronic coupling between the termini is examined. The quinone-bridged bisporphyrin P(2)TA-O(2) was synthesized by condensation of 2 equiv of the dione 2,3-dioxo-5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)chlorin with 2,3,5,6-tetraamino-1,4-benzoquinone. The electronic absorption spectra of P(2)TA-O(2) and its conjugated benzenoid analogue P(2)TA are measured and assigned, in conjunction with the spectra of the fragment monomers and porphyrin-bridge compounds.
View Article and Find Full Text PDF