Publications by authors named "Karina Pino-Lagos"

Background: IL-33, a pleiotropic cytokine, has been associated with a plethora of immune-related processes, both inflammatory and anti-inflammatory. T regulatory (Treg) cells, the main leukocyte population involved in immune tolerance, can be induced by the administration of IL-33, the local microbiota, and its metabolites. Here, we demonstrate that IL-33 drastically induces the production of intestinal metabolites involved on tryptophan (Trp) metabolism.

View Article and Find Full Text PDF

Long-term tolerance in the absence of immunosuppressive drugs is a major goal in the transplantation field, not yet attained. Recent research on the role of commensal microbiota in the control of immunity has opened new avenues for the search of novel clinical interventions. Indeed, products of intestinal metabolism generated by both host cells and the microbiota have been identified as modulators of the immune response.

View Article and Find Full Text PDF

Research on the role of extracellular vesicles (sEV) in physiology has demonstrated their undoubted importance in processes such as the transportation of molecules with significance for cell metabolism, cell communication, and the regulation of mechanisms such as cell differentiation, inflammation, and immunity. Although the role of EVs in the immune response is actively investigated, there is little literature revising, in a comprehensive manner, the role of small EVs produced by immune cells. Here, we present a review of studies reporting the release of sEV by different types of leukocytes and the implications of such observations on cellular homeostasis.

View Article and Find Full Text PDF

Life stressors can wreak havoc on our health, contributing to mood disorders like major depressive disorder (MDD), a widespread and debilitating condition. Unfortunately, current treatments and diagnostic strategies fall short of addressing these disorders, highlighting the need for new approaches. In this regard, the relationship between MDD, brain inflammation (neuroinflammation), and systemic inflammation in the body may offer novel insights.

View Article and Find Full Text PDF

Background: Pregnancy exacerbates the periodontal inflammation; however, the biological mediators involved are not well characterized. Neuropilins (NRPs) are transmembrane glycoproteins involved in physiological and pathogenic processes such as angiogenesis and immunity but its relationship with periodontal disease in pregnant women has not been studied.

Objective: To explore the soluble Neuropilin-1 (sNRP-1) levels in gingival crevicular fluid (GCF) samples during early pregnancy and its association with the periodontitis severity and periodontal clinical parameters.

View Article and Find Full Text PDF

The increasing demand for tissue replacement has encouraged scientists worldwide to focus on developing new biofabrication technologies. Multimaterials/cells printed with stringent resolutions are necessary to address the high complexity of tissues. Advanced inkjet 3D printing can use multimaterials and attain high resolution and complexity of printed structures.

View Article and Find Full Text PDF

The suppressive function of T-regulatory cells (Tregs) can have a detrimental effect on immune responses against tumor cells. Within the Treg cells subset, a new non-classical population has been reported, which expresses high levels of CD49b molecule and, depending on their activation status, can also express the canonical Tregs transcription factor Foxp3. In this report, we sought to characterize Tregs subsets in a murine melanoma model and disrupt the CD49b/CD29 axis by administering an anti-CD29 antibody in tumor-bearing mice.

View Article and Find Full Text PDF

Among the mechanisms of suppression that T regulatory (Treg) cells exert to control the immune responses, the secretion of small extracellular vesicles (sEV) has been recently proposed as a novel contact-independent immunomodulatory mechanism. Previous studies have demonstrated that Treg cells produce sEV, including exosomes, able to modulate the effector function of CD4+ T cells, and antigen presenting cells (APCs) such as dendritic cells (DCs) through the transfer of microRNA, cytokines, the production of adenosine, among others. Previously, we have demonstrated that Neuropilin-1 (Nrp1) is required for Tregs-mediated immunosuppression mainly by impacting on the phenotype and function of effector CD4+ T cells.

View Article and Find Full Text PDF

The microbiome corresponds to the genetic component of microorganisms (archaea, bacteria, phages, viruses, fungi, and protozoa) that coexist with an individual. During the last two decades, research on this topic has become massive demonstrating that in both homeostasis and disease, the microbiome plays an important role, and in some cases, a decisive one. To date, microbiota have been identified at different body locations, such as the eyes, lung, gastrointestinal and genitourinary tracts, and skin, and technological advances have permitted the taxonomic characterization of resident species and their metabolites, in addition to the cellular and molecular components of the host that maintain a crosstalk with local microorganisms.

View Article and Find Full Text PDF

Background: To explore the soluble Neuropilin-1 (sNRP-1) concentrations in gingival crevicular fluid (GCF) and the periodontal clinical status of patients with Rheumatoid Arthritis (RA).

Materials And Methods: We conducted an exploratory study with 40 study participants, 20 with RA, and 20 healthy controls. Clinical and periodontal data were recorded, and GCF samples were obtained.

View Article and Find Full Text PDF

Background: Soluble Neuropilin-1 (sNRP-1) is a glycoprotein with angiogenic and immune regulatory functions, which correspond to processes deeply involved with periodontal diseases. This study's objective was to determine the concentration of sNRP-1 in gingival crevicular fluid (GCF) samples of severe periodontitis (stages III-IV) compared to mild-moderate (stages I-II) periodontitis patients.

Materials And Methods: An exploratory cross-sectional study was conducted, including 36 adults subjected to a complete periodontal exam, which recorded the following periodontal parameters: periodontal probing depth (PPD), clinical attachment loss (CAL), bleeding on probing (BOP), gingival index (GI) and periodontal inflamed surface area (PISA).

View Article and Find Full Text PDF

T regulatory (Treg) cells have a major role in the maintenance of immune tolerance against self and foreign antigens through the control of harmful inflammation. Treg cells exert immunosuppressive function by several mechanisms, which can be distinguished as contact dependent or independent. Recently, the secretion of extracellular vesicles (EVs) by Treg cells has been reported as a novel suppressive mechanism capable of modulating immunity in a cell-contact independent and targeted manner, which has been identified in different pathologic scenarios.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have fueled ample translation for the treatment of immune-mediated diseases. They exert immunoregulatory and tissue-restoring effects. MSC-mediated transfer of mitochondria (MitoT) has been demonstrated to rescue target organs from tissue damage, yet the mechanism remains to be fully resolved.

View Article and Find Full Text PDF

Tissue regeneration is witnessing a significant surge in advanced medicine. It requires the interaction of scaffolds with different cell types for efficient tissue formation post-implantation. The presence of tissue subtypes in more complex organs demands the co-existence of different biomaterials showing different hydrolysis rate for specialized cell-dependent remodeling.

View Article and Find Full Text PDF

Several mechanisms of immune suppression have been attributed to Foxp3+ T regulatory cells (Treg) including modulation of target cells via inhibition of cell proliferation, alteration of cytokine secretion, and modification of cell phenotype, among others. Neuropilin-1 (Nrp1), a co-receptor protein highly expressed on Treg cells has been involved in tolerance-mediated responses, driving tumor growth and transplant acceptance. Here, we extend our previous findings showing that, despite expressing Foxp3, Treg cells have deficient suppressive function in a contact-independent manner.

View Article and Find Full Text PDF

The immune regulatory properties of IL-33 have indicated that this cytokine has the capacity to target several immune cells under a variety of immunological responses, including overt inflammation and tolerance. Due to its versatile mechanistics, we sought to investigate the role of IL-33 on mesenchymal stem cells (MSC), a population of cells with recognizable modulatory functions. Our data indicates that IL-33 does not affect the expression of classical MSC markers such as CD29, CD44 and CD73, or the lack of CD45, CD11b and CD117.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are critical players of immunological tolerance due to their ability to suppress effector T cell function thereby preventing transplant rejection and autoimmune diseases. During allograft transplantation, increases of both Treg expansion and generation, as well as their stable function, are needed to ensure allograft acceptance; thus, efforts have been made to discover new molecules that enhance Treg-mediated tolerance and to uncover their mechanisms. Recently, vitamin C (VitC), known to regulate T cell maturation and dendritic cell-mediated T cell polarization, has gained attention as a relevant epigenetic remodeler able to enhance and stabilize the expression of the Treg master regulator gene Foxp3, positively affecting the generation of induced Tregs (iTregs).

View Article and Find Full Text PDF

Since they were first described, mesenchymal stem cells (MSCs) have been shown to have important effector mechanisms and the potential for use in cell therapy. A great deal of research has been focused on unveiling how MSCs contribute to anti-inflammatory responses, including describing several cell populations involved and identifying soluble and other effector molecules. In this review, we discuss some of the contemporary evidence for use of MSCs in the field of immune tolerance, with a special emphasis on transplantation.

View Article and Find Full Text PDF

Several molecules have been described as CD4+ T cells differentiation modulators and among them retinoic acid (RA) and more recently, IL-33, have been studied. Due to the similarities in T helper cell skewing properties between RA and IL-33, we asked whether IL-33 intersects, directly or indirectly, the RA signaling pathway. Total CD4+ T cells from DR5-luciferase mice were activated in the presence of RA with or without IL-33, and RA signaling was visualized using ex vivo imaging.

View Article and Find Full Text PDF

IL-33 is a known member of the IL-1 cytokine superfamily classically named "atypical" due to its diverse functions. The receptor for this cytokine is the ST2 chain (or IL-1RL1), part of the IL-1R family, and the accessory chain IL-1R. ST2 can be found as both soluble and membrane-bound forms, property that explains, at least in part, its wide range of functions.

View Article and Find Full Text PDF

Interleukin-33 (IL-33) has been a focus of study because of its variety of functions shaping CD4(+) T-cell biology. In the present work, we evaluated the modulatory effect of IL-33 on suppressor cells in an in vivo transplantation model. C57BL/6 wild-type mice were grafted with syngeneic or allogeneic skin transplants and treated with exogenous IL-33 daily.

View Article and Find Full Text PDF

Aim: To date, there is no human dendritic cell (DC) based therapy to prevent allograft rejection in transplanted patients. Here, we evaluate a potential protocol using a murine in vivo transplant model.

Materials & Methods: We generated murine bone marrow-derived DCs (BM-DCs), modulated with rapamycin (Rapa) and activated with monophosphoryl lipid A (Rapamycin-treated and monophosphoryl lipid A-matured DCs [Rapa-mDCs]).

View Article and Find Full Text PDF

Retinoic acid (RA), a vitamin A metabolite, has been attributed to relevant functions in adaptive immunity. On T cells, the disruption on RA signaling alters both CD4+ and CD8+ T cells effector function. In this study, we evaluated the contribution of RA synthesis during the immune response using an in vivo skin transplantation model.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0ggumbjknmtka3jvf27cqi910t3lsdeh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once