The conversion of a soluble protein into polymeric amyloid structures is a process that is poorly understood. Here, we describe a fully redox-regulated amyloid system in which cysteine oxidation of the tumor suppressor protein p16 leads to rapid amyloid formation. We identify a partially-structured disulfide-bonded dimeric intermediate species that subsequently assembles into fibrils.
View Article and Find Full Text PDFExcessive production of microbicidal oxidants by neutrophils can damage host tissue. The short-term response of cells to oxidative stress is well understood, but the mechanisms behind long-term consequences require further clarification. Epigenetic pathways mediate cellular adaptation, and are therefore a potential target of oxidative stress.
View Article and Find Full Text PDFAlthough the mechanism of DNA demethylating drugs has been understood for many years, the direct effect of these drugs on methylation of the complementary strands of DNA has not been formally demonstrated. By using hairpin-bisulphite sequencing, we describe the kinetics and pattern of DNA methylation following treatment of cells by the DNA methyltransferase 1 (DNMT1) inhibitor, decitabine. As expected, we demonstrate complete loss of methylation on the daughter strand following S-phase in selected densely methylated genes in synchronized Jurkat cells.
View Article and Find Full Text PDFExcessive generation of oxidants by immune cells results in acute tissue damage. One mechanism by which oxidant exposure could have long-term effects is modulation of epigenetic pathways. We hypothesized that methylation of newly synthesized DNA in proliferating cells can be altered by oxidants that target DNA methyltransferase activity or deplete its substrate, the methyl donor SAM.
View Article and Find Full Text PDFCell death pathways such as apoptosis can be activated in response to oxidative stress, enabling the disposal of damaged cells. In contrast, controlled intracellular redox events are proposed to be a significant event during apoptosis signaling, regardless of the initiating stimulus. In this scenario oxidants act as second messengers, mediating the post-translational modification of specific regulatory proteins.
View Article and Find Full Text PDF