Anti-CD19 CAR-T cell therapy represents a breakthrough in the treatment of B-cell malignancies, and it is expected that this therapy modality will soon cover a range of solid tumors as well. Therefore, a universal cheap and sensitive method to detect CAR expression is of foremost importance. One possibility is the use of epitope tags such as c-Myc, HA or FLAG tags attached to the CAR extracellular domain, however, it is important to determine whether these tags can influence binding of the CAR with its target molecule.
View Article and Find Full Text PDFBackground: Preprint usage is growing rapidly in the life sciences; however, questions remain on the relative quality of preprints when compared to published articles. An objective dimension of quality that is readily measurable is completeness of reporting, as transparency can improve the reader's ability to independently interpret data and reproduce findings.
Methods: In this observational study, we initially compared independent samples of articles published in bioRxiv and in PubMed-indexed journals in 2016 using a quality of reporting questionnaire.
Chimeric antigen receptor (CAR)-T cell therapy represents a breakthrough in the immunotherapy field and has achieved great success following its approval in 2017 for the treatment of B cell malignancies. While CAR-T cells are mostly applied as anti-tumor therapy in the present, their initial concept was aimed at a more general purpose of targeting membrane antigens, thus translating in many potential applications. Since then, several studies have assessed the use of CAR-T cells toward non-malignant pathologies such as autoimmune diseases, infectious diseases and, more recently, cardiac fibrosis, and cellular senescence.
View Article and Find Full Text PDFWe discuss in this News and Commentary article the implications of senolytic chimeric antigen receptor T cells.
View Article and Find Full Text PDF