Background And Purpose: Development and progression of heart failure involve endothelial and myocardial dysfunction as well as a dysregulation of the NO-sGC-cGMP signalling pathway. Recently, we reported that the sGC stimulator riociguat has beneficial effects on cardiac remodelling and progression of heart failure in response to chronic pressure overload. Here, we examined if these beneficial effects of riociguat were also reflected in alterations of the myocardial proteome and microRNA profiles.
View Article and Find Full Text PDFBackground And Purpose: Heart failure is associated with an impaired NO-soluble guanylyl cyclase (sGC)-cGMP pathway and its augmentation is thought to be beneficial for its therapy. We hypothesized that stimulation of sGC by the sGC stimulator riociguat prevents pathological cardiac remodelling and heart failure in response to chronic pressure overload.
Experimental Approach: Transverse aortic constriction or sham surgery was performed in C57BL/6N mice.
Heart failure (HF) development is characterized by huge structural changes that are crucial for disease progression. Analysis of time dependent global proteomic adaptations during HF progression offers the potential to gain deeper insights in the disease development and identify new biomarker candidates. Therefore, hearts of TAC (transverse aortic constriction) and sham mice were examined by cardiac MRI on either day 4, 14, 21, 28, 42, and 56 after surgery (n = 6 per group/time point).
View Article and Find Full Text PDFStem cell therapy is a promising new option for patients suffering from heart failure. Though many clinical studies show encouraging results, little is known about the signals which cause stem cells to home to diseased but not to healthy hearts. We hypothesized that aldosterone as one of the main players of heart failure functions as an attractant for progenitor cells and stimulates their migration.
View Article and Find Full Text PDFProtein kinase G type I (PKGI) plays a critical role in survival signaling of pre- and postconditioning downstream of cardiac cGMP. However, it is unclear whether PKGI exerts its protective effects in the cardiomyocyte or if other cardiac cell types are involved, and whether nitric oxide (NO) metabolism can target cardiomyocyte mitochondria independently of cGMP/PKGI. We tested whether protection against reperfusion injury by ischemic postconditioning (IPost), soluble guanylyl cyclase (sGC) activation and inhibition, adenosine A(2B) receptor (A(2B)AR) agonist, phosphodiesterase type-5 (PDE-5) inhibitor, or mitochondria-targeted S-nitrosothiol (MitoSNO) was affected by a cardiomyocyte-specific ablation of the PKGI gene in the mouse (CMG-KO).
View Article and Find Full Text PDFProtection achieved by ischemic preconditioning is dependent on A(2B) adenosine receptors (A(2B)AR) in rabbit and mouse hearts and, predictably, an A(2B)AR agonist protects them. But it is controversial whether cardiomyocytes themselves actually express A(2B)AR. The present study tested whether A(2B)AR could be demonstrated on rat cardiomyocytes.
View Article and Find Full Text PDF