Beilstein J Nanotechnol
September 2022
An efficient single-photon emitter (SPE) should emit photons at a high rate into a well-defined spatio-temporal mode along with an accessible numerical aperture (NA) to increase the light extraction efficiency that is required for effective coupling into optical waveguides. Based on a previously developed experimental approach to fabricate hybrid Fabry-Perot microcavities (Ortiz-Huerta et al. , , 33245), we managed to find analytical and finite-difference time-domain (FDTD) values for the, experimentally achievable, geometrical parameters of a hybrid plano-concave microcavity that enhances the spontaneous emission (i.
View Article and Find Full Text PDFWe experimentally observe the stimulated analogue of Hawking radiation produced in a photonic-crystal fiber, with a pulsed pump and a continuous-wave probe. In particular, we propose and demonstrate an innovative method to boost the efficiency and probe the coherence characteristics of the analogue Hawking effect relying on a double pump pulse with a controlled temporal delay. We show that the emitted analogue Hawking radiation corresponds to the coherently-added, interfering Hawking signals resulting from the probe interacting with each pump pulse.
View Article and Find Full Text PDFWe report a scheme for generating ultrabroadband two-photon states by spontaneous parametric downconversion (SPDC) using randomly aperiodically poled crystals designed with an optimization algorithm based on the Monte Carlo-Metropolis method with simulated annealing. A particular SPDC source is discussed, showing results of the spectral and temporal properties of the emitted two-photon states, obtaining almost transform-limited SPDC biphoton wave packets. We also analyze the effect of fabrication errors on the SPDC.
View Article and Find Full Text PDFIn this work, we experimentally demonstrate a photon-pair source with correlations in the frequency and polarization degrees of freedom. We base our source on the spontaneous four-wave mixing (SFWM) process in a photonic crystal fiber. We show theoretically that the two-photon state is the coherent superposition of up to six distinct SFWM processes, each corresponding to a distinct combination of polarizations for the four waves involved and giving rise to an energy-conserving pair of peaks.
View Article and Find Full Text PDFHere, reciprocity and Babinet's principles were applied to the design of integrated plasmonic structures on silicon photonic waveguides. Numerical analyses and near-field optical microscopy observations show that one of the hybrid photonic-plasmonic structures exhibits high confinement and enhancement of the electric field, and, through Babinet's principle, the magnetic field of its complementary structure is confined and enhanced as well. Reciprocally, due to the modification of the electric and magnetic local density of states, enhanced emission of electric and magnetic dipoles by Purcell effect were obtained into specific silicon photonic modes.
View Article and Find Full Text PDFWe report on the generation of an indistinguishable heralded single-photon state, using highly nondegenerate spontaneous parametric downconversion (SPDC). Spectrally factorable photon pairs can be generated by incorporating a broadband pump pulse and a group-velocity matching (GVM) condition in a periodically-poled potassium titanyl phosphate (PPKTP) crystal. The heralding photon is in the near IR, close to the peak detection efficiency of off-the-shelf Si single-photon detectors; meanwhile, the heralded photon is in the telecom L-band where fiber losses are at a minimum.
View Article and Find Full Text PDFWe present a source of near-infrared photon pairs based on the process of spontaneous parametric downconversion (SPDC), for which the joint signal-idler quantum state is designed to be factorable in the frequency-time and in the transverse position-momentum degrees of freedom. Our technique is based on the use of a broadband pump and vector group velocity matching between the pump, signal, and idler waves. We show experimentally that a source based on this technique can be configured for the generation of: i) pure heralded single photons, and ii) polarization-entangled photon pairs which are free from spectral correlations, in both cases without resorting to spectral filtering.
View Article and Find Full Text PDFWe present an experimental and theoretical study of photon pairs generated by spontaneous four-wave mixing (SFWM), based on birefringent phasematching, in a fiber that supports more than one transverse mode. We present SFWM spectra, obtained through single-channel and coincidence photon counting, which exhibit multiple peaks shown here to be the result of multiple SFWM processes associated with different combinations of transverse modes for the pump, signal, and idler waves.
View Article and Find Full Text PDFWe present an experimental proposal for the generation of photon triplets based on third-order spontaneous parametric downconversion in thin optical fibers. Our analysis includes expressions for the quantum state, which describes the photon triplets and for the generation rate in terms of all experimental parameters. We also present, for a specific source design, numerically calculated generation rates.
View Article and Find Full Text PDF