The mammalian brain is assembled from thousands of neuronal cell types that are organized in distinct circuits to perform behaviorally relevant computations. Transgenic mouse lines with selectively marked cell types would facilitate our ability to dissect functional components of complex circuits. We carried out a screen for cell type-specific green fluorescent protein expression in the retina using BAC transgenic mice from the GENSAT project.
View Article and Find Full Text PDFThe mammalian vomeronasal system is specialized in pheromone detection. The neural circuitry of the accessory olfactory bulb (AOB) provides an anatomical substrate for the coding of pheromone information. Here, we describe the axonal projection pattern of vomeronasal sensory neurons to the AOB and the dendritic connectivity pattern of second-order neurons.
View Article and Find Full Text PDFThe mammalian vomeronasal organ (VNO), a part of the olfactory system, detects pheromones--chemical signals that modulate social and reproductive behaviours. But the molecular receptors in the VNO that detect these chemosensory stimuli remain undefined. Candidate pheromone receptors are encoded by two distinct and complex superfamilies of genes, V1r and V2r (refs 3 and 4), which code for receptors with seven transmembrane domains.
View Article and Find Full Text PDFSeven-transmembrane-domain proteins encoded by the vomeronasal receptor V1r and V2r gene superfamilies, and expressed by vomeronasal sensory neurons, are believed to be pheromone receptors in rodents. Four V1r gene families have been described in the mouse (V1ra, V1rb, V1rc and V3r). Here we have screened near-complete mouse genomic databases to obtain a first global draft of the mouse V1r repertoire, including 104 new V1r genes.
View Article and Find Full Text PDF