Breast cancer develops upon sequential acquisition of driver mutations in mammary epithelial cells; however, how these mutations collaborate to transform normal cells remains unclear in most cases. We aimed to reconstitute this process in a particular case. To this end, we combined the activated form of the PI 3-kinase harboring the H1047R mutation with the inactivation of the histone lysine methyl-transferase KMT2D in the non-tumorigenic human mammary epithelial cell line MCF10A.
View Article and Find Full Text PDFWhole exome sequencing of invasive mammary carcinomas revealed the association of mutations in and tumor suppressor genes (TSGs). We generated single and combined and knock-outs (KOs) in the immortalized mammary epithelial cell line MCF10A to study the role of these genes and their potential synergy in migration regulation. Inactivation of , but not , induced the formation of large colonies in soft agar.
View Article and Find Full Text PDFUrokinase receptor (uPAR) is a glycosylphosphatidylinositol (GPI)-anchored receptor of urokinase (uPA), which is involved in brain development, nerve regeneration, wound healing and tissue remodeling. We have recently shown that , which encodes uPAR, is an early response gene in murine brain. Assumingly, diverse functions of might be attributed to hypothetical, unidentified microRNAs encoded within introns of the gene.
View Article and Find Full Text PDFuPAR is a membrane receptor that binds extracellular protease urokinase, contributes to matrix remodeling and plays a crucial role in cellular adhesion, proliferation, survival, and migration. uPAR overexpression in tumor cells promotes mitogenesis, opening a prospective avenue for targeted therapy. However, uPAR targeting in cancer has potential risks.
View Article and Find Full Text PDFNeurotrophin receptors regulate neuronal survival and network formation, as well as synaptic plasticity in the brain via interaction with their ligands. Here, we examined early changes in the expression of neurotrophin receptor genes Ntk1 (TrkA), Ntrk2 (TrkB), Ntrk3 (TrkC), Ngfr (p75NTR) and miRNAs that target theses gens in the mouse brain after induction of seizure activity by pentylenetetrazol. We found that expression of Ntrk3 and Ngfr was upregulated in the cortex and the hippocampus 1-3 hours after the seizures, while Ntrk2 expression increased after 3-6 hours in the anterior cortex and after 1 and 6 hours in the hippocampus.
View Article and Find Full Text PDFBy 2003, the Human Genome project had been completed; however, it turned out that 97% of genome sequences did not encode proteins. The explanation came later when it was found the untranslated DNA contain sequences for short microRNAs (miRNAs) and long noncoding RNAs that did not produce any mRNAs or tRNAs, but instead were involved in the regulation of gene expression. Initially identified in the cytoplasm, miRNAs have been found in all cell compartments, where their functions are not limited to the degradation of target mRNAs.
View Article and Find Full Text PDFThe urokinase system is involved in a variety of physiological processes, such as fibrinolysis, matrix remodeling, wound healing, and regeneration. Upon binding to its cognate receptor urokinase-type plasminogen activator receptor (uPAR), urokinase-type plasminogen activator (uPA) catalyzes the conversion of plasminogen to plasmin and the activation of matrix metalloproteases. Apart from this, uPA-uPAR interaction can lead to the activation of transcription factors, mitogen-activated protein kinase signaling pathways and RTK cascades.
View Article and Find Full Text PDFEpileptogenesis progressively leads to the rearrangement of normal neuronal networks into more excitable ones and can be viewed as a form of neuroplasticity, the molecular mechanisms of which still remain obscure. Here, we studied pentylenetetrazole seizure-induced regulation of genes for plasminogen activator system in the mouse brain. We found that expression of tissue plasminogen activator (tPA) and urokinase receptor (uPAR) mRNA was strongly increased in the mouse cerebral cortex, hippocampus, striatum and amygdala as early as 3 hr after pentylenetetrazole seizures.
View Article and Find Full Text PDFCell lines represent convenient models to elucidate specific causes of multigenetic and pluricausal diseases, to test breakthrough regenerative technologies. Most commonly used cell lines surpass diploid cells in their accessibility for delivery of large DNA molecules and genome editing, but the main obstacles for obtaining cell models with knockout-targeted protein from aneuploid cells are multiple allele copies and karyotype/phenotype heterogeneity. In the study, we report an original approach to CRISPR-/Cas9-mediated genome modification of aneuploid cell cultures to create functional cell models, achieving highly efficient targeted protein knockout and avoiding "clonal effect" (for the first time to our knowledge).
View Article and Find Full Text PDFNeuroblastoma is a tumor arising from pluripotent sympathoadrenal precursor cells of neural cell origin. Neuroblastoma is one of the most aggressive childhood tumors with highly invasive and metastatic potential. The increased expression of urokinase and its receptor is often associated with a negative prognosis in neuroblastoma patients.
View Article and Find Full Text PDF