Publications by authors named "Karina Bivar Xavier"

Switching from a low-fat and high-fiber diet to a Western-style high-fat and high-sugar diet causes microbiota imbalances that underlay many pathological conditions (i.e., dysbiosis).

View Article and Find Full Text PDF

Antibiotics alter microbiota composition and increase infection susceptibility. However, the generalizable effects of antibiotics on and the contribution of environmental variables to gut commensals remain unclear. To address this, we tracked microbiota dynamics with high temporal and taxonomic resolution during antibiotic treatment in a controlled murine system by isolating variables such as diet, treatment history, and housing co-inhabitants.

View Article and Find Full Text PDF

The mammalian gastrointestinal tract harbors a diverse and complex resident bacterial community, which interacts with the host in many beneficial processes required for optimal host health. We are studying the importance of bacterial cell-cell communication mediated by the interspecies quorum-sensing signal autoinducer-2 (AI-2) in the beneficial properties of the gut microbiota. Our recent work provided the first evidence that AI-2 produced by Escherichia coli can influence the species composition of this community in the mouse gut.

View Article and Find Full Text PDF

The mammalian gut microbiota harbors a diverse ecosystem where hundreds of bacterial species interact with each other and their host. Given that bacteria use signals to communicate and regulate group behaviors (quorum sensing), we asked whether such communication between different commensal species can influence the interactions occurring in this environment. We engineered the enteric bacterium, Escherichia coli, to manipulate the levels of the interspecies quorum sensing signal, autoinducer-2 (AI-2), in the mouse intestine and investigated the effect upon antibiotic-induced gut microbiota dysbiosis.

View Article and Find Full Text PDF

The evolution of multiple antibiotic resistance is an increasing global problem. Resistance mutations are known to impair fitness, and the evolution of resistance to multiple drugs depends both on their costs individually and on how they interact--epistasis. Information on the level of epistasis between antibiotic resistance mutations is of key importance to understanding epistasis amongst deleterious alleles, a key theoretical question, and to improving public health measures.

View Article and Find Full Text PDF

Quorum sensing is a form of cell-cell signaling in bacteria that provides information regarding population density, species composition, and environmental and metabolic signals. It enables community-wide coordination of gene expression, and presumably benefits group behaviors. Multiple regulatory small RNAs (sRNAs) act centrally in quorum sensing, integrating signals with other environmental stimuli, to produce an appropriate output.

View Article and Find Full Text PDF