Objective: Evaluate the effect of aging using two different methods on the three-dimensional fit of zirconia abutments at the implant-abutment connection and estimate the probability of survival of anterior crowns supported by straight and 17-degree angled abutments.
Materials And Methods: Two different zirconia abutment designs, straight and 17-degree angled abutments (n = 63/group), were evaluated in the current study. The abutments were randomly allocated into three experimental groups according to laboratory aging condition (134°C, 2.
To characterize the physicomechanical properties of an alumina-toughened zirconia (ATZ). ATZ synthesis consisted of the addition of alumina particles in an yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) matrix. Specimens were obtained by uniaxial and isostatic pressing ATZ and 3Y-TZP powders and sintering at 1600°C/1 h and 1550°C/1 h, respectively.
View Article and Find Full Text PDFObjective: An important factor affecting the biomechanical behavior of implant-supported reconstructions is the implant-abutment misfit. This study evaluated the misfit between Ti-Base abutments and implants by means of polyvinyl siloxane replica technique using microcomputed tomography (μCT).
Methodology: Volumetric and linear (central and marginal) gaps of four Ti-base abutments (n=10/group): (i) Odontofix LTDA (OD), (ii) Singular Implants (SING), (iii) EFF Dental Components (EFF), and (iv) Control Group (S.