Human papillomaviruses (HPVs) are responsible for the most common human sexually transmitted viral infections. Infection with high-risk HPVs, particularly HPV16, is associated with the development of cervical cancer. The papillomavirus L1 major capsid protein, the basis of the currently marketed vaccines, self-assembles into virus-like particles (VLPs).
View Article and Find Full Text PDFMicrobes Infect
April 2006
Mucosal epithelia constitute the first barriers to be overcome by pathogens during infection. The induction of protective IgA in this location is important for the prevention of infection and can be achieved through different mucosal immunization strategies. Lactic acid bacteria have been tested in the last few years as live vectors for the delivery of antigens at mucosal sites, with promising results.
View Article and Find Full Text PDFInfections with human papillomavirus type 16 (HPV-16) are closely associated with the development of human cervical carcinoma, which is one of the most common causes of cancer death in women worldwide. At present, the most promising vaccine against HPV-16 infection is based on the L1 major capsid protein, which self-assembles in virus-like particles (VLPs). In this work, we used a lactose-inducible system based on the Lactobacillus casei lactose operon promoter (plac) for expression of the HPV-16 L1 protein in L.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2004
Cholera toxin B subunit (CTB) is responsible for CT holotoxin binding to the cell and has been described as a mucosal adjuvant for vaccines. In this work, the ctxB gene was genetically fused to the psaA gene from Streptococcus pneumoniae, a surface protein involved in its colonization in the host that is also considered a vaccine antigen candidate against this pathogen. The CTB-PsaA fusion protein was expressed in Escherichia coli, and the purified protein was used for intranasal immunization experiments in Balb/C mice.
View Article and Find Full Text PDF