Activity-dependent synaptic plasticity involves rapid regulation of neuronal protein synthesis on a time-scale of minutes. miRNA function in synaptic plasticity and memory formation has been elucidated by stable experimental manipulation of miRNA expression and activity using transgenic approaches and viral vectors. However, the impact of rapid miRNA modulation on synaptic efficacy is unknown.
View Article and Find Full Text PDFBackground: DNA methylation is a key modulator of gene expression in mammalian development and cellular differentiation, including neurons. To date, the role of DNA modifications in long-term potentiation (LTP) has not been explored.
Results: To investigate the occurrence of DNA methylation changes in LTP, we undertook the first detailed study to describe the methylation status of all known LTP-associated genes during LTP induction in the dentate gyrus of live rats.
Introduction: The Activity-Regulated Cytoskeleton-associated (ARC) gene encodes a protein that is critical for the consolidation of synaptic plasticity and long-term memory formation. Given ARC's key role in synaptic plasticity, we hypothesized that genetic variations in ARC may contribute to interindividual variability in human cognitive abilities or to attention-deficit hyperactivity disorder (ADHD) susceptibility, where cognitive impairment often accompanies the disorder.
Methods: We tested whether ARC variants are associated with six measures of cognitive functioning in 670 healthy subjects in the Norwegian Cognitive NeuroGenetics (NCNG) by extracting data from its Genome-Wide Association Study (GWAS).
Sporadic Alzheimer's disease (AD) is an incurable neurodegenerative disease with clear pathological hallmarks, brain dysfunction, and unknown etiology. Here, we tested the hypothesis that there is a link between genetic risk factors for AD, cellular metabolic stress, and transcription/translation regulation. In addition, we aimed at reversing the memory impairment observed in a mouse model of sporadic AD.
View Article and Find Full Text PDFBDNF signaling contributes to protein-synthesis-dependent synaptic plasticity, but the dynamics of TrkB signaling and mechanisms of translation have not been defined. Here, we show that long-term potentiation (LTP) consolidation in the dentate gyrus of live rodents requires sustained (hours) BDNF-TrkB signaling. Surprisingly, this sustained activation maintains an otherwise labile signaling pathway from TrkB to MAP-kinase-interacting kinase (MNK).
View Article and Find Full Text PDFmicroRNAs (miRNAs) are major regulators of protein synthesis in the brain. A major goal is to identify changes in miRNA expression underlying protein synthesis-dependent forms of synaptic plasticity such as long-term potentiation (LTP). Previous analyses focused on changes in miRNA levels in total lysate samples.
View Article and Find Full Text PDFBackground: The purpose of the study was to evaluate the effects of krill oil (KO) on cognition and depression-like behaviour in rats.
Methods: Cognition was assessed using the Aversive Light Stimulus Avoidance Test (ALSAT). The Unavoidable Aversive Light Stimulus (UALST) and the Forced Swimming Test (FST) were used to evaluate the antidepressant-like effects of KO.
mRNA translation, or protein synthesis, is a major component of the transformation of the genetic code into any cellular activity. This complicated, multistep process is divided into three phases: initiation, elongation, and termination. Initiation is the step at which the ribosome is recruited to the mRNA, and is regarded as the major rate-limiting step in translation, while elongation consists of the elongation of the polypeptide chain; both steps are frequent targets for regulation, which is defined as a change in the rate of translation of an mRNA per unit time.
View Article and Find Full Text PDFExpression of activity-regulated cytoskeleton associated protein (Arc) is crucial for diverse types of experience-dependent synaptic plasticity and long-term memory in mammals. However, the mechanisms governing Arc-specific translation are little understood. Here, we asked whether Arc translation is regulated by microRNAs.
View Article and Find Full Text PDFDietary supplementation with ω-3 polyunsaturated fatty acids (ω-3 PUFAs), specifically the fatty acids docosahexaenoic acid (DHA; 22:6 ω-3) and eicosapentaenoic acid (EPA; 20:5 ω-3), is known to have beneficial health effects including improvements in glucose and lipid homeostasis and modulation of inflammation. To evaluate the efficacy of two different sources of ω-3 PUFAs, we performed gene expression profiling in the liver of mice fed diets supplemented with either fish oil (FO) or krill oil (KO). We found that ω-3 PUFA supplements derived from a phospholipid krill fraction (KO) downregulated the activity of pathways involved in hepatic glucose production as well as lipid and cholesterol synthesis.
View Article and Find Full Text PDFStressful life events generally enhance the vulnerability for the development of human psychopathologies such as anxiety disorders and depression. The incidence rates of adult mental disorders steeply rises during adolescence in parallel with a structural and functional reorganization of the neural circuitry underlying stress reactivity. However, the mechanisms underlying susceptibility to stress and manifestation of mental disorders during adolescence are little understood.
View Article and Find Full Text PDFRegulation of microRNA (miRNA) expression and function in the context of activity-dependent synaptic plasticity in the adult brain is little understood. Here, we examined miRNA expression during long-term potentiation (LTP) in the dentate gyrus of adult anesthetized rats. Microarray expression profiling identified a subpopulation of regulated mature miRNAs 2 h after the induction of LTP by high-frequency stimulation (HFS) of the medial perforant pathway.
View Article and Find Full Text PDFBackground: Human memory and general cognitive abilities are complex functions of high heritability and wide variability in the population. The brain-derived neurotrophic factor (BDNF) plays an important role in mammalian memory formation.
Methodology / Principal Finding: Based on the identification of genes markedly up-regulated during BDNF-induced synaptic consolidation in the hippocampus, we selected genetic variants that were tested in three independent samples, from Norway and Scotland, of adult individuals examined for cognitive abilities.
Regulation of translation factor activity plays a major role in protein synthesis-dependent forms of synaptic plasticity. We examined translational control across the critical period of Arc synthesis underlying consolidation of long term potentiation (LTP) in the dentate gyrus of intact, anesthetized rats. LTP induction by high frequency stimulation (HFS) evoked phosphorylation of the cap-binding protein eukaryotic initiation factor 4E (eIF4E) and dephosphorylation of eIF2alpha on a protracted time course matching the time-window of Arc translation.
View Article and Find Full Text PDFThe immediate early gene Arc is emerging as a versatile, finely tuned system capable of coupling changes in neuronal activity patterns to synaptic plasticity, thereby optimizing information storage in the nervous system. Here, we attempt to overview the Arc system spanning from transcriptional regulation of the Arc gene, to dendritic transport, metabolism, and translation of Arc mRNA, to post-translational modification, localization, and degradation of Arc protein. Within this framework we discuss the function of Arc in regulation of actin cytoskeletal dynamics underlying consolidation of long-term potentiation (LTP) and regulation of AMPA-type glutamate receptor endocytosis underlying long-term depression (LTD) and homeostatic plasticity.
View Article and Find Full Text PDFSeveral lines of evidence implicate BDNF in the pathogenesis of stress-induced depression and the delayed efficacy of antidepressant drugs. Antidepressant-induced upregulation of BDNF signaling is thought to promote adaptive neuronal plasticity through effects on gene expression, but the effector genes downstream of BDNF has not been identified. Local infusion of BDNF into the dentate gyrus induces a long-term potentiation (BDNF-LTP) of synaptic transmission that requires upregulation of the immediate early gene Arc.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) is a critical regulator of transcription-dependent adaptive neuronal responses, such as long-term potentiation (LTP). Brief infusion of BDNF into the dentate gyrus of adult anesthetized rats triggers stable LTP at medial perforant path-granule synapses that is transcription-dependent and requires induction of the immediate early gene Arc. Rather than acting alone, Arc is likely to be part of a larger BDNF-induced transcriptional program.
View Article and Find Full Text PDFMaternally synthesised factors contribute to the establishment of the germ cell lineage in lower vertebrates. In zebrafish, germ-soma segregation appears to be completed by the late blastula stage of development. To search for new germ cell factors in the zebrafish, we have used subtractive cDNA cloning.
View Article and Find Full Text PDF