Publications by authors named "Karin Wewerka"

In the course of this study, the dielectric and physicochemical properties of poly(2-oxazoline) (POx) networks from renewable resources were compared with those of fossil-based polyamide 12 (PA 12) networks. POx was synthesized by the energy-efficient, microwave-assisted copolymerization of 2-oxazoline monomers, which were derived from fatty acids of coconut and castor oil. For the preparation of composites, aluminum nitride nanoparticles n-AlN and microparticles μ-AlN as well as hexagonal boron nitride BN submicroparticles were used.

View Article and Find Full Text PDF

Due to the specific vacuum requirements for scanning electron microscopy (SEM), the Raman microscope has to operate in vacuum in a correlative Raman-SEM, which is a type of microscope combination that has recently increased in popularity. This works considers the implications of conducting Raman microscopy under vacuum, as opposed to operating in ambient air, the standard working regime of this technique. We show that the performance of the optics of the Raman microscope are identical in both conditions, but laser beam-sample interactions, such as fluorescent bleaching and beam damage, might be different due to the lack of oxygen in vacuum.

View Article and Find Full Text PDF

The pronouncedly low thermal conductivity of polymers in the range of 0.1-0.2 W m K is a limiting factor for their application as an insulating layer in microelectronics that exhibit continuously higher power-to-volume ratios.

View Article and Find Full Text PDF

Bulk heterojunction solar cells based on conjugated polymer donors and fullerene-derivative acceptors have received much attention in the last decade. Alternative acceptors like organic non-fullerene acceptors or inorganic nanocrystals have been investigated to a lesser extent; however, they also show great potential. In this study, one focus is set on the investigation of the growth of copper indium sulfide nanocrystals in a conjugated polymer matrix.

View Article and Find Full Text PDF