Publications by authors named "Karin Strittmatter"

Cancer patients with advanced disease are characterized by intrinsic challenges in predicting drug response patterns, often leading to ineffective treatment. Current clinical practice for treatment decision-making is commonly based on primary or secondary tumour biopsies, yet when disease progression accelerates, tissue biopsies are not performed on a regular basis. It is in this context that liquid biopsies may offer a unique window to uncover key vulnerabilities, providing valuable information about previously underappreciated treatment opportunities.

View Article and Find Full Text PDF

The metastatic spread of cancer is achieved by the haematogenous dissemination of circulating tumour cells (CTCs). Generally, however, the temporal dynamics that dictate the generation of metastasis-competent CTCs are largely uncharacterized, and it is often assumed that CTCs are constantly shed from growing tumours or are shed as a consequence of mechanical insults. Here we observe a striking and unexpected pattern of CTC generation dynamics in both patients with breast cancer and mouse models, highlighting that most spontaneous CTC intravasation events occur during sleep.

View Article and Find Full Text PDF

Transcription factors AP-2α and AP-2β have been suggested to regulate the differentiation of nephron precursor populations towards distal nephron segments. Here, we show that in the adult mammalian kidney AP-2α is found in medullary collecting ducts, whereas AP-2β is found in distal nephron segments except for medullary collecting ducts. Inactivation of AP-2α in nephron progenitor cells does not affect mammalian nephrogenesis, whereas its inactivation in collecting ducts leads to defects in medullary collecting ducts in the adult.

View Article and Find Full Text PDF

Unlabelled: Blood-borne metastasis of breast cancer involves a series of tightly regulated sequential steps, including the growth of a primary tumor lesion, intravasation of circulating tumor cells (CTC), and adaptation in various distant metastatic sites. The genes orchestrating each of these steps are poorly understood in physiologically relevant contexts, owing to the rarity of experimental models that faithfully recapitulate the biology, growth kinetics, and tropism of human breast cancer. Here, we conducted an in vivo loss-of-function CRISPR screen in newly derived CTC xenografts, unique in their ability to spontaneously mirror the human disease, and identified specific genetic dependencies for each step of the metastatic process.

View Article and Find Full Text PDF

Macrophages undergoing M1- versus M2-type polarization differ significantly in their cell metabolism and cellular functions. Here, global quantitative time-course proteomics and phosphoproteomics paired with transcriptomics provide a comprehensive characterization of temporal changes in cell metabolism, cellular functions, and signaling pathways that occur during the induction phase of M1- versus M2-type polarization. Significant differences in, especially, metabolic pathways are observed, including changes in glucose metabolism, glycosaminoglycan metabolism, and retinoic acid signaling.

View Article and Find Full Text PDF

NLRP3 inflammasome activation and complement-mediated inflammation have been implicated in promoting choroidal neovascularization (CNV) in age-related macular degeneration (AMD), but central questions regarding their contributions to AMD pathogenesis remain unanswered. Key open questions are (1) whether NLRP3 inflammasome activation mainly in retinal pigment epithelium (RPE) or rather in non-RPE cells promotes CNV, (2) whether inflammasome activation in CNV occurs via NLRP3 or also through NLRP3-independent mechanisms, and (3) whether complement activation induces inflammasome activation in CNV. Here we show in a neovascular AMD mouse model that NLRP3 inflammasome activation in non-RPE cells but not in RPE cells promotes CNV.

View Article and Find Full Text PDF
Article Synopsis
  • Circulating tumor cells (CTCs) can come from solid tumors as either single cells or clusters, with clusters having a higher potential to spread cancer (metastasize).
  • Research shows that most CTC clusters from breast cancer are in low-oxygen (hypoxic) environments, while single CTCs exist in normal oxygen levels (normoxic).
  • Targeting vascular endothelial growth factor (VEGF) reduces primary tumor size but increases hypoxia, leading to more CTC cluster shedding and metastasis, while treatments that encourage blood vessel growth (pro-angiogenic) increase tumor size but reduce CTC cluster formation and metastasis.
View Article and Find Full Text PDF

Neovascular age-related macular degeneration is among the most common causes of irreversible blindness and manifests with choroidal neovascularization (CNV). Anti-vascular endothelial growth factor-A therapies are only partially effective and their chronic administration may impair functions of the choriocapillaris and retina. Thus, novel therapeutic targets are needed urgently.

View Article and Find Full Text PDF

The transcription factor AP-1 subunit JUNB has been shown to play a pivotal role in angiogenesis. It positively controls angiogenesis by regulating Vegfa as well as the transcriptional regulator Cbfb and its target Mmp13. In line with these findings, it has been demonstrated that tumor cell-derived JUNB promotes tumor growth and angiogenesis.

View Article and Find Full Text PDF

NVP-AEW541, a specific ATP-competitive inhibitor of the insulin-like growth factor-1 receptor (IGF1R) tyrosine kinase, has been reported to interfere with tumor growth in various tumor transplantation models. We have assessed the efficacy of NVP-AEW541 in repressing tumor growth and tumor progression in the Rip1Tag2 transgenic mouse model of pancreatic β-cell carcinogenesis. In addition, we have tested NVP-AEW541 in Rip1Tag2;RipIGF1R double-transgenic mice which show accelerated tumor growth and increased tumor malignancy compared with Rip1Tag2 single-transgenic mice.

View Article and Find Full Text PDF

Background: The family of vascular endothelial growth factors (VEGF) contains key regulators of blood and lymph vessel development, including VEGF-A, -B, -C, -D, and placental growth factor. The role of VEGF-B during physiological or pathological angiogenesis has not yet been conclusively delineated. Herein, we investigate the function of VEGF-B by the generation of mouse models of cancer with transgenic expression of VEGF-B or homozygous deletion of Vegfb.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) consists of specific physical barriers, enzymes and transporters, which together maintain the necessary extracellular environment of the central nervous system (CNS). The main physical barrier is found in the CNS endothelial cell, and depends on continuous complexes of tight junctions combined with reduced vesicular transport. Other possible constituents of the BBB include extracellular matrix, astrocytes and pericytes, but the relative contribution of these different components to the BBB remains largely unknown.

View Article and Find Full Text PDF

The Rip1Tag2 transgenic mouse model of pancreatic beta-cell carcinogenesis has been instrumental in identifying several hallmarks of cancer, including tumor cell evasion from apoptosis, tumor angiogenesis and tumor invasion. Moreover, Rip1Tag2 mice have been helpful in the development and testing of innovative cancer therapies and tumor imaging protocols. However, based on tumor localization in the mouse, primary tumor growth and metastatic dissemination cannot be easily monitored in a longitudinal axis by non-invasive and low-technology approaches.

View Article and Find Full Text PDF

Halting tumor growth by interfering with tumor-induced angiogenesis is an attractive therapeutic approach. Such treatments include humanized antibodies blocking the activity of vascular endothelial growth factor (VEGF)-A (bevacizumab), soluble VEGF receptor (VEGFR) constructs (VEGF-Trap), or small-molecule inhibitors of VEGFR signaling, including PTK787/ZK222584 (PTK/ZK), sorafenib, and sunitinib. PTK/ZK has been shown previously to specifically block VEGF-induced phosphorylation of VEGFR-1, -2 and -3 and thereby to inhibit endothelial cell proliferation, differentiation, and tumor angiogenesis.

View Article and Find Full Text PDF

Loss of expression of the cell-cell adhesion molecule E-cadherin is a hallmark of epithelial-mesenchymal transition (EMT) in development and in the progression from epithelial tumours to invasive and metastatic cancers. Here, we demonstrate that the loss of E-cadherin function upregulates expression of the neuronal cell adhesion molecule (NCAM). Subsequently, a subset of NCAM translocates from fibroblast growth factor receptor (FGFR) complexes outside lipid rafts into lipid rafts where it stimulates the non-receptor tyrosine kinase p59(Fyn) leading to the phosphorylation and activation of focal adhesion kinase and the assembly of integrin-mediated focal adhesions.

View Article and Find Full Text PDF

Members of the vascular endothelial growth factor (VEGF) family are critical players in angiogenesis and lymphangiogenesis. Although VEGF-A has been shown to exert fundamental functions in physiologic and pathologic angiogenesis, the exact role of the VEGF family member placental growth factor (PlGF) in tumor angiogenesis has remained controversial. To gain insight into PlGF function during tumor angiogenesis, we have generated transgenic mouse lines expressing human PlGF-1 in the beta cells of the pancreatic islets of Langerhans (Rip1PlGF-1).

View Article and Find Full Text PDF

Integrins are transmembrane receptors that bind extracellular matrix proteins and enable cell adhesion and cytoskeletal organization, as well as transduction of signals into cells, to promote various aspects of cellular behavior, such as proliferation or survival. Integrins participate in many aspects of tumor biology. Here, we have employed the Rip1Tag2 transgenic mouse model of pancreatic beta cell carcinogenesis to investigate the role of beta(1)-integrin in tumor progression.

View Article and Find Full Text PDF

In many human carcinomas, expression of the lymphangiogenic factor vascular endothelial growth factor-D (VEGF-D) correlates with up-regulated lymphangiogenesis and regional lymph node metastasis. Here, we have used the Rip1Tag2 transgenic mouse model of pancreatic beta-cell carcinogenesis to investigate the functional role of VEGF-D in the induction of lymphangiogenesis and tumor progression. Expression of VEGF-D in beta cells of single-transgenic Rip1VEGF-D mice resulted in the formation of peri-insular lymphatic lacunae, often containing leukocyte accumulations and blood hemorrhages.

View Article and Find Full Text PDF

Many previous reports have demonstrated that systemic administration of endostatin (ES), a proteolytic cleavage product of collagen type XVIII and an endogenous angiogenesis inhibitor, represses tumor angiogenesis in different preclinical tumor models with varying efficacy. For example, systemic delivery of recombinant ES to rat insulin promoter 1 (Rip1)T-antigen 2 (Tag2)-transgenic mice, a mouse model of pancreatic beta-cell carcinogenesis, has repressed tumor angiogenesis efficiently and with it, tumor growth. Here, we report that the transgenic expression of ES in Rip1ES-transgenic mice only interferes moderately with tumor growth in Rip1Tag2;Rip1ES double-transgenic mice.

View Article and Find Full Text PDF

Reduced expression of neural cell adhesion molecule (NCAM) has been implicated in the progression to tumor malignancy in cancer patients. Previously, we have shown that the loss of NCAM function causes the formation of lymph node metastasis in a transgenic mouse model of pancreatic beta cell carcinogenesis (Rip1Tag2). Here we show that tumors of NCAM-deficient Rip1Tag2 transgenic mice exhibit up-regulated expression of the lymphangiogenic factors vascular endothelial growth factor (VEGF)-C and -D (17% in wild-type versus 60% in NCAM-deficient Rip1Tag2 mice) and, with it, increased lymphangiogenesis (0% in wild-type versus 19% in NCAM-deficient Rip1Tag2 mice).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: