Protein/solvent interactions largely influence protein dynamics, particularly motions in unfolded and intrinsically disordered proteins (IDPs). Here, we apply triplet-triplet energy transfer (TTET) to investigate the coupling of internal protein motions to solvent motions by determining the effect of solvent viscosity (η) and macromolecular crowding on the rate constants of loop formation () in several unfolded polypeptide chains including IDPs. The results show that the viscosity dependence of loop formation depends on amino acid sequence, loop length, and co-solute size.
View Article and Find Full Text PDFInternal dynamics of proteins are essential for protein folding and function. Dynamics in unfolded proteins are of particular interest since they are the basis for many cellular processes like folding, misfolding, aggregation, and amyloid formation and also determine the properties of intrinsically disordered proteins (IDPs). It is still an open question of what governs motions in unfolded proteins and whether they encounter major energy barriers.
View Article and Find Full Text PDFZNF462 haploinsufficiency is linked to Weiss-Kruszka syndrome, a genetic disorder characterized by neurodevelopmental defects, including autism. Though conserved in vertebrates and essential for embryonic development, the molecular functions of ZNF462 remain unclear. We identified its murine homologue ZFP462 in a screen for mediators of epigenetic gene silencing.
View Article and Find Full Text PDFHeterochromatin protein 1 (HP1) facilitates the formation of repressive heterochromatin domains by recruiting histone lysine methyltransferase enzymes to chromatin, resulting in increased levels of histone H3K9me3. To identify chemical inhibitors of the HP1-heterochromatin gene repression pathway, we combined a cell-based assay that utilized chemical-mediated recruitment of HP1 to an endogenous active gene with high-throughput flow cytometry. Here we characterized small molecule inhibitors that block HP1-mediated heterochromatin formation.
View Article and Find Full Text PDFPolycomb group (PcG) proteins play critical roles in the epigenetic inheritance of cell fate. The Polycomb Repressive Complexes PRC1 and PRC2 catalyse distinct chromatin modifications to enforce gene silencing, but how transcriptional repression is propagated through mitotic cell divisions remains a key unresolved question. Using reversible tethering of PcG proteins to ectopic sites in mouse embryonic stem cells, here we show that PRC1 can trigger transcriptional repression and Polycomb-dependent chromatin modifications.
View Article and Find Full Text PDF