Mutations in the gene encoding the ubiquitously expressed free radical scavenging enzyme superoxide dismutase-1 (SOD1) are found in 2-6% of amyotrophic lateral sclerosis patients. The most frequent SOD1 mutation worldwide is D90A. Amyotrophic lateral sclerosis caused by this mutation has some unusual features: the heredity is usually recessive, the phenotype is stereotypic with slowly evolving motor symptoms beginning in the legs and may also include sensory, autonomic, and urinary bladder involvement.
View Article and Find Full Text PDFDespite considerable progress in uncovering the molecular details of protein aggregation in vitro, the cause and mechanism of protein-aggregation disease remain poorly understood. One reason is that the amount of pathological aggregates in neural tissue is exceedingly low, precluding examination by conventional approaches. We present here a method for determination of the structure and quantity of aggregates in small tissue samples, circumventing the above problem.
View Article and Find Full Text PDFA GGGGCC-repeat expansion in C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) among Caucasians. However, little is known about the variability of the GGGGCC expansion in different tissues and whether this correlates with the observed phenotype. Here, we used Southern blotting to estimate the size of hexanucleotide expansions in C9orf72 in neural and non-neural tissues from 18 autopsied ALS and FTD patients with repeat expansion in blood.
View Article and Find Full Text PDFA common cause of amyotrophic lateral sclerosis is mutations in superoxide dismutase-1, which provoke the disease by an unknown mechanism. We have previously found that soluble hydrophobic misfolded mutant human superoxide dismutase-1 species are enriched in the vulnerable spinal cords of transgenic model mice. The levels were broadly inversely correlated with life spans, suggesting involvement in the pathogenesis.
View Article and Find Full Text PDFA common cause of amyotrophic lateral sclerosis (ALS) is mutations in the gene encoding superoxide dismutase-1. There is evolving circumstantial evidence that the wild-type protein can also be neurotoxic and that it may more generally be involved in the pathogenesis of ALS. To test this proposition more directly, we generated mice that express wild-type human superoxide dismutase-1 at a rate close to that of mutant superoxide dismutase-1 in the commonly studied G93A transgenic model.
View Article and Find Full Text PDFMotor nerve excitability studies by "threshold tracking" in amyotrophic lateral sclerosis (ALS) revealed heterogeneous abnormalities in motor axon membrane function possibly depending on disease stage. It remains unclear to which extent the excitability deviations reflect a pathogenic mechanism in ALS or are merely a consequence of axonal degeneration. We investigated motor axon excitability in presymptomatic and symptomatic SOD1(G127X) mutants, a mouse model of ALS with late clinical onset and rapid disease progression.
View Article and Find Full Text PDFMutant superoxide dismutase-1 (SOD1) has an unidentified toxic property that provokes ALS. Several ALS-linked SOD1 mutations cause long C-terminal truncations, which suggests that common cytotoxic SOD1 conformational species should be misfolded and that the C-terminal end cannot be involved. The cytotoxicity may arise from interaction of cellular proteins with misfolded SOD1 species.
View Article and Find Full Text PDFMutations in CuZn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) and are found in 6% of ALS patients. Non-native and aggregation-prone forms of mutant SOD1s are thought to trigger the disease. Two sets of novel antibodies, raised in rabbits and chicken, against peptides spaced along the human SOD1 sequence, were by enzyme-linked immunosorbent assay and an immunocapture method shown to be specific for denatured SOD1.
View Article and Find Full Text PDFMutant superoxide dismutase-1 (SOD1) causes amyotrophic lateral sclerosis (ALS) through a cytotoxic mechanism of unknown nature. A hallmark in ALS patients and transgenic mouse models carrying human SOD1 (hSOD1) mutations are hSOD1-immunoreactive inclusions in spinal cord ventral horns. The hSOD1 inclusions may block essential cellular functions or cause toxicity through sequestering of other proteins.
View Article and Find Full Text PDFThe most common of the amyotrophic lateral sclerosis (ALS)-associated superoxide dismutase-1 (SOD1) mutations, D90A, differs from others in its high structural stability and by the existence of both recessive and dominant inheritance. Here SOD1 in CNS and peripheral organs from five ALS patients homozygous for D90A were compared to controls. In most areas, including ventral horns, there were no significant differences in SOD1 activities and Western blotting patterns between controls and D90A cases.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by loss of motor neurons resulting in progressive paralysis. To date, more than 140 different mutations in the gene encoding CuZn-superoxide dismutase (SOD1) have been associated with ALS. Several transgenic murine models exist in which various mutant SOD1s are expressed.
View Article and Find Full Text PDFMutants of superoxide dismutase-1 (SOD1) cause ALS by an unidentified cytotoxic mechanism. We have previously shown that the stable SOD1 mutants D90A and G93A are abundant and show the highest levels in liver and kidney in transgenic murine ALS models, whereas the unstable G85R and G127X mutants are scarce but enriched in the CNS. These data indicated that minute amounts of misfolded SOD1 enriched in the motor areas might exert the ALS-causing cytotoxicity.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
December 2006
Mutant human CuZn-superoxide dismutases (hSOD1s) cause amyotrophic lateral sclerosis (ALS). The most common mutation is the wild type-like D90A and to explore its properties, transgenic mice were generated and compared with mice expressing wild-type hSOD1. D90A hSOD1 was both in vivo in mice and in vitro under denaturing conditions nearly as stable as the wild-type human enzyme.
View Article and Find Full Text PDFMutants of human superoxide dismutase-1 (hSOD1) cause amyotrophic lateral sclerosis (ALS), and mitochondria are thought to be primary targets of the cytotoxic action. The high expression rates of hSOD1s in transgenic ALS models give high levels of the stable mutants G93A and D90A as well as the wild-type human enzyme, significant proportions of which lack Cu and the intrasubunit disulfide bond. The endogenous murine SOD1 (mSOD1) also lacks Cu and is disulfide reduced but is active and oxidized in mice expressing the low-level unstable mutants G85R and G127insTGGG.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease afflicting the voluntary motor system. More than 100 different mutations in the ubiquitously expressed enzyme superoxide dismutase-1 (SOD1) have been associated with the disease. To search for the nature of the cytotoxicity of mutant SOD1s, amounts, enzymic activities and structural properties of the protein as well as the CNS histopathology were examined in multiple transgenic murine models.
View Article and Find Full Text PDF