The dose dependence of oral nickel tolerance was analyzed by comparing three different subsets of C57BL/6 mice: Ni(very low) mice were reared in a nickel-reduced environment, Ni(low) and Ni(high) mice were reared in a stainless steel-containing environment and the latter received oral NiCl(2) (10 mM). In spleen and feces, Ni(very low) mice exhibit significantly lower nickel concentrations than Ni(low) and Ni(high) mice. In contrast to Ni(very low) mice that can be sensitized with a single intradermal administration of NiCl(2) alone, Ni(low) mice can only be sensitized in the presence of an adjuvant and Ni(high) mice cannot be sensitized at all.
View Article and Find Full Text PDFWhereas oral nickel administration to C57BL/6 mice (Ni(high) mice) renders the animals tolerant to immunization with NiCl2 combined with H2O2 as adjuvant, as determined by ear-swelling assay, it fails to tolerize Jalpha18-/- mice, which lack invariant NKT (iNKT) cells. Our previous work also showed that Ni(high) splenic B cells can adoptively transfer the nickel tolerance to untreated (Ni(low)) recipients, but not to Jalpha18-/- recipients. In this study, we report that oral nickel administration increased the nickel content of splenic Ni(high) B cells and up-regulated their Fas expression while down-regulating expression of bcl-2 and Bcl-xL, thus giving rise to an Ag-carrying, apoptosis-prone B cell phenotype.
View Article and Find Full Text PDFPreviously, oral administration of nickel to C57BL/6 wild-type (WT) mice was shown to render both their splenic T cells and APCs (i.e., T cell-depleted spleen cells) capable of transferring nickel tolerance to naive syngeneic recipients.
View Article and Find Full Text PDFPreviously, we reported that tolerance to nickel, induced by oral administration of Ni(2+) ions, can be adoptively transferred to naive mice with only 10(2) splenic T cells. Here we show that 10(2) T cell-depleted spleen cells (i.e.
View Article and Find Full Text PDF