The cell toxic effects of nonionic surfactants were investigated by means of two in vitro models, namely pig nasal mucosa mounted in horizontal Ussing chambers, and Caco-2 cell monolayers. A series of homologous polyethyleneoxide (PEO) surfactants with a wide span in hydrophilic head-group size and hydrophobic chain lengths were screened for concentration-dependent effects on the transepithelial electrical resistance (TEER) and mannitol permeability across Caco-2 cell monolayers. Trends in effects on permeability in the presence of increasing surfactant concentration coincided with the effects seen on TEER.
View Article and Find Full Text PDFThe uptake of ovalbumin-conjugated starch microparticles (OVA-MP) was studied after application to porcine respiratory nasal mucosa in vitro. Nasal mucosa from freshly slaughtered pigs was mounted in horizontal Ussing chambers, which permit monitoring of the viability of the tissue exposed to microparticles and ensure that the microparticles are deposited on the mucosa. The antigen-conjugated starch microparticles have previously been shown to produce strong mucosal, cellular and systemic immune responses to conjugated model antigens following oral administration.
View Article and Find Full Text PDFIn this study, controlled release gel formulations containing dihydroalprenolol (DHA), hydrocortisone (HC) or testosterone (TS) in Carbopol 934P (C934) were evaluated using pig nasal mucosa in a horizontal Ussing chamber. The controlled release gel formulations were designed by including DHA in vesicle bilayers formed with sodium dodecyl sulphate (SDS) (1.4 and 36 mM) and by partitioning TS to the core of Brij 58 (B58, 1%) micelles.
View Article and Find Full Text PDFThe horizontal Ussing chamber method described here allows performance of transport studies on pig nasal respiratory mucosa under conditions simulating reality in that it mimics the air-mucosa interface. The transport of testosterone and mannitol through pig nasal mucosa in the horizontal Ussing chamber was investigated using both liquid and air mucosal interfaces. There were no significant differences in either the bioelectrical parameters (transmucosal electrical resistance, R, potential difference, PD, and short circuit current, I(sc)) or the apparent permeability (P(app)) of the mucosa to testosterone or mannitol between the liquid and air interface experiments.
View Article and Find Full Text PDF