Objective: To determine if mesenchymal stromal cells (MSCs) derived from human umbilical cords (hUC) could reduce degeneration developing when injected into the knee of a large animal model of osteoarthritis (OA).
Design: Ten million culture-expanded UC-MSCs (pooled from 3 human donors) were injected in 50 μL of tissue culture medium into the left stifle joints of 7 sheep whose medial meniscus was transected 4 weeks previously. Seven other sheep had only 50 μL of medium injected as the no treatment "control" group.
Knee joint trauma can cause an osteochondral defect (OD), a risk factor for osteoarthritis (OA) and cause of debilitating pain in patients. Rodent OD models are less translatable because of their smaller joint size and open growth plate. This study proposes sheep as a translationally relevant model to understand the neuronal basis of OD pain.
View Article and Find Full Text PDFObjective: The aim of this study was to assess computed tomography (CT) images of cadaveric feline stifles and record the relationship between the patella and femoral trochlea in normal stifles; then to investigate the effect of block recession trochleoplasty (BRT) with and without partial parasagittal patellectomy (PPP) on patellofemoral contact, depth of patellar recession and size of trochlea and patella.
Materials And Methods: The sample population included six cat cadavers (12 stifles). Preoperative CT scans with stifles in three positions: extended (155-165°), neutral (85-95°) and flexed (35-45°).
Background: Osteochondral injuries represent a significant clinical problem requiring novel cell-based therapies to restore function of the damaged joint with the use of mesenchymal stromal cells (MSCs) leading research efforts. Pre-clinical studies are fundamental in translating such therapies; however, technologies to minimally invasively assess in vivo cell fate are currently limited. We investigate the potential of a MRI- (magnetic resonance imaging) and superparamagnetic iron oxide nanoparticle (SPION)-based technique to monitor cellular bio-distribution in an ovine osteochondral model of acute and chronic injuries.
View Article and Find Full Text PDFMany potential treatments for orthopedic disease fail at the animal to human translational hurdle. One reason for this failure is that the majority of pre-clinical outcome measurements emphasize structural changes, such as gross morphology and histology, and do not address pain or its alleviation, which is a key component of treatment success in man. With increasing emphasis on "patient reported outcome measurements (PROM)" in clinical practice, in this study we have used two different telemetric methods (geolocation and Fitbark activity trackers, Kansas City, MO) to measure movement behavior, i.
View Article and Find Full Text PDF