Apolipoprotein E (apoE) is a regulator of peripheral cholesterol homeostasis, and the apoE-isoform E4 is a major risk factor for the development of Alzheimer's disease (AD). Accumulating evidence suggests a key role for aberrant cholesterol metabolism in AD. We hypothesized that apoE-deficiency in mice not only affects cholesterol homeostasis in the periphery, but also in the brain, and that this can be restored by astrocyte-specific expression of human apoE3, but not apoE4.
View Article and Find Full Text PDFCholesterol is a prominent modulator of the integrity and functional activity of physiological membranes and the most abundant sterol in the mammalian brain. DHCR24-knock-out mice lack cholesterol and accumulate desmosterol with age. Here we demonstrate that brain cholesterol deficiency in 3-week-old DHCR24(-/-) mice was associated with altered membrane composition including disrupted detergent-resistant membrane domain (DRM) structure.
View Article and Find Full Text PDFPresenilins (PSs) are components of the gamma-secretase complex that mediates intramembranous cleavage of type I membrane proteins. We show that gamma-secretase is involved in the regulation of cellular lipoprotein uptake. Loss of gamma-secretase function decreased endocytosis of low-density lipoprotein (LDL) receptor.
View Article and Find Full Text PDFNiemann-pick type C (NPC) disease is characterized by endosomal and lysosomal accumulation of lipids, impaired tubulovesicular trafficking, and neurodegeneration leading to premature death. Current treatment options are limited to mainly symptomatic treatments. Thus, new and efficient drug targets are needed, and therefore we performed a Gene Set Enrichment Analysis (GSEA) on NPC and healthy fibroblasts to identify globally affected pathways in NPC that could serve as targets for later drug discovery programs.
View Article and Find Full Text PDFCholesterol has been implicated to play an important role in the generation of Abeta peptides, which are the main component of beta-amyloid plaques in the brains of patients suffering from Alzheimer's disease (AD). Epidemiological data implicate that lowering cholesterol levels has beneficial effects on the extent of beta-amyloid pathology. Thus therapeutic intervention using cholesterol lowering drugs like statins seems to be a promising approach.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2006
Prion diseases are fatal and at present there are neither cures nor palliative therapies known/available, which delay disease onset or progression. Cholesterol-lowering drugs have been reported to inhibit prion replication in infected cell cultures and to modulate inflammatory reactions. We aimed to determine whether simvastatin-treatment could delay disease onset in a murine prion model.
View Article and Find Full Text PDFStatins inhibit endogenous cholesterol synthesis, up-regulate low-density lipoprotein (LDL) receptor expression in mammalian liver cells, and thus decrease circulating LDL-cholesterol concentrations. As cholesterol seems to play a role in the development of neurodegenerative diseases, it is of interest to evaluate the effect of high dosages of statins (eg, atorvastatin or simvastatin) on brain cholesterol metabolism. Plasma samples from 44 participants (aged 30-69 years, 16 men and 18 women) of an earlier randomized, placebo-controlled, double-blind trial, who took 40 mg atorvastatin or 80 mg simvastatin daily for 2 months, were used to analyze total cholesterol, its precursor lathosterol, and its metabolites 24(S)-hydroxycholesterol and 27-hydroxycholesterol.
View Article and Find Full Text PDFThe cholesterol-synthesizing enzyme seladin-1, encoded by the Dhcr24 gene, is a flavin adenine dinucleotide-dependent oxidoreductase and regulates responses to oncogenic and oxidative stimuli. It has a role in neuroprotection and is downregulated in affected neurons in Alzheimer's disease (AD). Here we show that seladin-1-deficient mouse brains had reduced levels of cholesterol and disorganized cholesterol-rich detergent-resistant membrane domains (DRMs).
View Article and Find Full Text PDFObjectives: The HMG-CoA reductase inhibitors, or statins, are well established in the prevention and treatment of coronary artery disease, mainly by lowering low-density lipoprotein (LDL) cholesterol levels. These compounds are structurally similar, but differ in their lipophilicity. Several studies have indicated a link between cholesterol and Alzheimer's disease (AD), and there is also epidemiological evidence that statin treatment may decrease the prevalence of dementias.
View Article and Find Full Text PDFOn a global scale, there is an increasing tendency for a more aggressive treatment of hypercholesterolemia. Minor effects of statins on brain cholesterol metabolism have been reported in some in vivo animal studies, and it seems that this is due to a local effect of the drug. We treated male mice of the inbred strain C57/BL6 with a high daily dose of lipophilic simvastatin (100 mg/kg b.
View Article and Find Full Text PDFSterol regulatory element binding proteins-1 and -2 (SREBPs) are transcription factors controlling lipid homeostasis in human cells. The G-allele carriers of the SREBF-1 gene C-G polymorphism in exon 18c and coding for glycine at the protein level (G952G) have shown to associate more frequently with obesity and type 2 diabetes than the C-allele carriers. However, the C-allele has suggested to be linked to dyslipidemia.
View Article and Find Full Text PDFBackground: Myopathy, probably caused by 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibition in skeletal muscle, rarely occurs in patients taking statins. This study was designed to assess the effect of high-dose statin treatment on cholesterol and ubiquinone metabolism and mitochondrial function in human skeletal muscle.
Methods: Forty-eight patients with hypercholesterolemia (33 men and 15 women) were randomly assigned to receive 80 mg/d of simvastatin (n = 16), 40 mg/d of atorvastatin (n = 16), or placebo (n = 16) for 8 weeks.