In general, the erosion rate of copovidone-based amorphous solid dispersions (ASDs) in contact with water diminishes with increasing drug load, causing poor drug release from the final drug product. A new easy-to-use tool with low material- and time-consumption, the microscopic erosion time test (METT), was established to allow prediction of the API-specific drug load threshold between an eroding and a non-eroding ASD. This API-specific drug load value is further described as the drug load dispersibility limit (DDL) and is the highest drug load at which an eroding ASD was still observed.
View Article and Find Full Text PDFWhen using lipid nanoparticles as drug carrier system it is important to know how much drug can be loaded to the nanoparticles. The mainly used drug loading procedure is an empirical approach dissolving the drug in the liquid lipid during preparation of the nanoparticles. This approach does not necessarily lead to the truly loadable amount, as the lipid can, e.
View Article and Find Full Text PDFOur aim was to explore the influence of micelles and microparticles emerging in aqueous dispersions of amorphous solid dispersions (ASDs) on molecular/apparent solubility and Caco-2 permeation. The ASD, prepared by hot-melt extrusion, contained the poorly soluble model drug ABT-102, a hydrophilic polymer, and three surfactants. Aqueous dispersions of the ASD were investigated at two concentrations, one above and one close to the critical micelle concentration of the surfactants blend in the extrudate.
View Article and Find Full Text PDFAmorphous solid dispersions (ASDs) are a promising formulation approach for poorly soluble active pharmaceutical ingredients (APIs), because they ideally enhance both dissolution rate and solubility. However, the mechanism behind this is not understood in detail. In the present study, we investigated the supramolecular and the nano/microparticulate structures that emerge spontaneously upon dispersion of an ASD in aqueous medium and elucidated their influence on solubility.
View Article and Find Full Text PDFAmorphous solid dispersions (ASDs) represent a promising formulation approach for poorly soluble drugs. We explored the formulation-related impact of ASDs on permeation rate, apparent solubility and molecular solubility of the poorly soluble drug ABT-102. The influence of fasted state simulated intestinal fluid (FaSSIF) as dispersion medium was also studied.
View Article and Find Full Text PDFThe poorly water-soluble drug ABT-102, a potent TRPV1 (transient receptor potential cation channel subfamily V member 1) antagonist, was investigated in terms of its solubility and dissolution-permeation rate across Caco-2 cell monolayers in the presence and absence of fasted state simulated intestinal fluid (FaSSIF). ABT-102 showed a more than 30-fold higher apparent solubility in FaSSIF, compared to Hank's balanced salt solution (HBSS). On the other hand, the amount of truly dissolved API in the suspension, as assessed by inverse dialysis, was found hardly influenced by FaSSIF.
View Article and Find Full Text PDFColloidal dispersions of solid lipids are under intensive investigation as drug delivery systems. In the present study, poly(vinyl alcohol) (PVA) was tested as an alternative stabilizer for triglyceride nanoparticles. The dispersions contained 10% triglyceride (trimyristin or tristearin) and 5% PVA and were prepared by high pressure melt homogenization.
View Article and Find Full Text PDFAqueous colloidal monoolein/poloxamer dispersions are under investigation as drug delivery systems. Depending on the composition and preparation procedure these dispersions may either contain predominantly vesicular particles or nanoparticles of cubic inner structure. To study the influence of ultrastructure on drug release, corresponding dispersions loaded with the model drugs diazepam (two different concentrations) and chloramphenicol were prepared by high-pressure homogenization with or without subsequent heat treatment.
View Article and Find Full Text PDF