Unlabelled: Several reports suggest that clinically used concentrations of inhaled anesthetics can increase conductance through noninactivating potassium channels and that the resulting hyperpolarization might decrease excitability, thereby leading to the anesthetic state. We speculated that animals deficient in such potassium channels might be resistant to the effects of anesthetics. Thus, in the present study, we measured the minimum alveolar anesthetic concentration (MAC) needed to prevent movement in response to a noxious stimulus in 50% of adult mice lacking functional KCNK5 potassium channel subunits and compared these results with those for heterozygous and wild-type mice.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
August 2002
To understand the roles that nucleoside transporters play in the in vivo distribution of clinically important nucleoside analogs, the substrate specificity of each transporter isoform should be determined. In the present work, we studied the substrate specificities of the human and rat orthologs of the Na+-dependent purine-selective nucleoside transporter (SPNT; concentrative nucleoside transporter 2), for nucleosides, nucleobases, and base- and ribose-modified nucleoside analogs. The two-electrode voltage-clamp technique in Xenopus laevis oocytes expressing these transporters was used.
View Article and Find Full Text PDF