Publications by authors named "Karin Leistner"

Voltage control of magnetoresistance (MR) in nanoscale three-dimensional (3D) geometries is interesting from a fundamental point of view and a promising route toward novel sensors and energy-efficient computing schemes. Magneto-ionic mechanisms are favorable for low-voltage control of magnetism and room-temperature operation, but magneto-ionic control of MR has been studied only for planar geometries so far. We synthesize a 3D nanomaterial with magneto-ionic functionality by electrodepositing an iron hydroxide/iron coating on a porous nanoscale gold network (aerogel).

View Article and Find Full Text PDF

Tuning and controlling the magnetic properties of nanomaterials is crucial to implement new and reliable technologies based on magnetic hyperthermia, spintronics, or sensors, among others. Despite variations in the alloy composition as well as the realization of several post material fabrication treatments, magnetic heterostructures as ferromagnetic/antiferromagnetic coupled layers have been widely used to modify or generate unidirectional magnetic anisotropies. In this work, a pure electrochemical approach has been used to fabricate core (FM)/shell (AFM) Ni@(NiO,Ni(OH)) nanowire arrays, avoiding thermal oxidation procedures incompatible with integrative semiconductor technologies.

View Article and Find Full Text PDF

Colossal magnetoresistance is of great fundamental and technological significance in condensed-matter physics, magnetic memory, and sensing technologies. However, its relatively narrow working temperature window is still a severe obstacle for potential applications due to the nature of the material-inherent phase transition. Here, we realized hierarchical LaSrMnO thin films with well-defined (001) and (221) crystallographic orientations by combining substrate modification with conventional thin-film deposition.

View Article and Find Full Text PDF

As the size of magnetic devices continuously decreases, the creation of three-dimensional nanomagnets and the understanding of their magnetic configurations become increasingly important for modern applications. Here, by progressive nucleation during epitaxial nanoelectrodeposition, we synthesize single-crystal iron nanocuboids with sizes ranging 10 to 200 nm on one sample. The size-dependent magnetic configurations of these nanocuboids are studied by quantitative magnetic force microscopy and electron holography.

View Article and Find Full Text PDF

Voltage control of magnetic order is desirable for spintronic device applications, but 180° magnetization switching is not straightforward because electric fields do not break time-reversal symmetry. Ferrimagnets are promising candidates for 180° switching owing to a multi-sublattice configuration with opposing magnetic moments of different magnitudes. In this study we used solid-state hydrogen gating to control the ferrimagnetic order in rare earth-transition metal thin films dynamically.

View Article and Find Full Text PDF

The effect of microstructure on the efficiency of shielding or shunting of the magnetic flux by permalloy shields was investigated in the present work. For this purpose, the FeNi shielding coatings with different grain structures were obtained using stationary and pulsed electrodeposition. The coatings' composition, crystal structure, surface microstructure, magnetic domain structure, and shielding efficiency were studied.

View Article and Find Full Text PDF

A comparative study of the anodization processes occurring at the GaAs(111)A and GaAs(111)B surfaces exposed to electrochemical etching in neutral NaCl and acidic HNO aqueous electrolytes is performed in galvanostatic and potentiostatic anodization modes. Anodization in NaCl electrolytes was found to result in the formation of porous structures with porosity controlled either by current under the galvanostatic anodization, or by the potential under the potentiostatic anodization. Possibilities to produce multilayer porous structures are demonstrated.

View Article and Find Full Text PDF

Electron beam induced current (EBIC) measurements were carried out in situ in the scanning electron microscope on free-standing GaAs/Fe core-shell nanowires (NWs), isolated from the GaAs substrate via a layer of aluminum oxide. The excess current as a function of the electron beam energy, position on the NW, and scan direction were collected, together with energy dispersive x-ray spectroscopy. A model that included the effects of beam energy and Fe thickness predicted an average collection efficiency of 60%.

View Article and Find Full Text PDF

Aligned, individual iron square cuboid nanoparticles have been achieved by taking advantage of epitaxial, three-dimensional-island growth on GaAs(001) during electrodeposition at low deposition rates. The nanoparticles exhibit lateral dimensions between 10 and 80 nm and heights below 40 nm. Surface {100} facets predominate with a thin crystalline oxide shell that protects the nanoparticles during prolonged storage in air.

View Article and Find Full Text PDF