Publications by authors named "Karin I Oberg"

Complex organic molecules are widespread in different areas of the interstellar medium, including cold areas, such as molecular clouds, where chemical reactions occur in ice. Among the observed molecules are oxygen-bearing organic molecules, which are of high interest given their significant role in astrobiology. Despite the observed rich chemistry, the underlying molecular mechanisms responsible for molecular formation in such cold dilute areas are still not fully understood.

View Article and Find Full Text PDF

Models of terrestrial planet formation predict that the final stages of planetary assembly-lasting tens of millions of years beyond the dispersal of young protoplanetary disks-are dominated by planetary collisions. It is through these giant impacts that planets like the young Earth grow to their final mass and achieve long-term stable orbital configurations. A key prediction is that these impacts produce debris.

View Article and Find Full Text PDF

Delivery of water and organics by asteroid and comet impacts may have influenced prebiotic chemistry on the early Earth. Some recent prebiotic chemistry experiments emphasize hydrogen cyanide (HCN) as a feedstock molecule for the formation of sugars, ribonucleotides, amino acids, and lipid precursors. Here, we assess how much HCN originally contained in a comet would survive impact, using parametric temperature and pressure profiles together with a time-dependent chemistry model.

View Article and Find Full Text PDF

The interstellar medium is characterized by a rich and diverse chemistry. Many of its complex organic molecules are proposed to form through radical chemistry in icy grain mantles. Radicals form readily when interstellar ices (composed of water and other volatiles) are exposed to UV photons and other sources of dissociative radiation, and if sufficiently mobile the radicals can react to form larger, more complex molecules.

View Article and Find Full Text PDF

Deuterium-to-hydrogen (D/H) enrichments in molecular species provide clues about their original formation environment. The organic materials in primitive solar system bodies generally have higher D/H ratios and show greater D/H variation when compared to D/H in solar system water. We propose this difference arises at least in part due to (1) the availability of additional chemical fractionation pathways for organics beyond that for water, and (2) the higher volatility of key carbon reservoirs compared to oxygen.

View Article and Find Full Text PDF

Observations of comets and asteroids show that the solar nebula that spawned our planetary system was rich in water and organic molecules. Bombardment brought these organics to the young Earth's surface. Unlike asteroids, comets preserve a nearly pristine record of the solar nebula composition.

View Article and Find Full Text PDF

Interstellar complex organic molecules were first identified in the hot inner regions of massive young stellar objects (MYSOs), but have more recently been found in many colder sources, indicating that complex molecules can form at a range of temperatures. However, individually these observations provide limited constraints on how complex molecules form, and whether the same formation pathways dominate in cold, warm and hot environments. To address these questions, we use spatially resolved observations from the Submillimeter Array of three MYSOs together with mostly unresolved literature data to explore how molecular ratios depend on environmental parameters, especially temperature.

View Article and Find Full Text PDF

Identifying the source of Earth's water is central to understanding the origins of life-fostering environments and to assessing the prevalence of such environments in space. Water throughout the solar system exhibits deuterium-to-hydrogen enrichments, a fossil relic of low-temperature, ion-derived chemistry within either (i) the parent molecular cloud or (ii) the solar nebula protoplanetary disk. Using a comprehensive treatment of disk ionization, we find that ion-driven deuterium pathways are inefficient, which curtails the disk's deuterated water formation and its viability as the sole source for the solar system's water.

View Article and Find Full Text PDF

Planets form in the disks around young stars. Their formation efficiency and composition are intimately linked to the protoplanetary disk locations of "snow lines" of abundant volatiles. We present chemical imaging of the carbon monoxide (CO) snow line in the disk around TW Hya, an analog of the solar nebula, using high spatial and spectral resolution Atacama Large Millimeter/Submillimeter Array observations of diazenylium (N2H(+)), a reactive ion present in large abundance only where CO is frozen out.

View Article and Find Full Text PDF

Carbon monoxide is after H(2) the most abundant molecule identified in the interstellar medium (ISM), and is used as a major tracer for the gas phase physical conditions. Accreted at the surface of water-rich icy grains, CO is considered to be the starting point of a complex organic--presumably prebiotic--chemistry. Non-thermal desorption processes, and especially photodesorption by UV photons, are seen as the main cause that drives the gas-to-ice CO balance in the colder parts of the ISM.

View Article and Find Full Text PDF

We present laboratory data on pure, layered and mixed CO and O2 ices relevant for understanding the absence of gaseous O2 in space. Experiments have been performed on interstellar ice analogues under ultra high vacuum conditions by molecular deposition at 14 K on a gold surface. A combination of reflection absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD) is used to derive spectroscopic and thermodynamic properties of the ices.

View Article and Find Full Text PDF