Cycling hypoxia (cycH) is a prevalent form of tumor hypoxia that is characterized by exposure of tumor cells to recurrent phases of hypoxia and reoxygenation. CycH has been associated with a particularly aggressive cellular phenotype of tumor cells and increased therapy resistance. By performing comparative analyses under normoxia, physoxia, chronic hypoxia, and cycH, we here uncover distinct effects of cycH on the phenotype of human papillomavirus (HPV)-positive cervical cancer cells.
View Article and Find Full Text PDFNovel treatment options for human papillomavirus (HPV)-induced cancers are urgently required. The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is considered to be constitutively active in HPV-positive cervical cancer cells and essential for their proliferation. Moreover, STAT3 was reported to undergo mutually stimulatory interactions with the HPV E6/E7 oncogenes.
View Article and Find Full Text PDFCervical cancer is the fourth leading cause of cancer deaths in women, with over 340,000 women dying from this disease in 2020. Almost all cases have an underlying persistent infection with an oncogenic high-risk type of human papillomavirus (HPV), mainly HPV16. While cervical squamous cell carcinoma is hardly ever HPV-negative, a small subset of adenocarcinoma exhibits absence of HPV, even after disproval of false-negative testing results due to low viral load.
View Article and Find Full Text PDFHead and neck squamous cell carcinomas (HNSCC) caused by infections with high-risk human papillomaviruses (HPV) are responsible for an increasing number of head and neck cancers, particularly in the oropharynx. Despite the significant biological differences between HPV-driven and HPV-negative HNSCC, treatment strategies are similar and not HPV targeted. HPV-driven HNSCC are known to be more sensitive to treatment, particularly to radiotherapy, which is at least partially due to HPV-induced immunogenicity.
View Article and Find Full Text PDFThe gene is controversially discussed to possess pro- or anti-tumorigenic potential. Here, we analyze the regulation of cellular FAM57A protein levels and study the functional role of in HPV-positive cervical cancer cells. We find that FAM57A protein expression strongly depends on cell density, with FAM57A being readily detectable at low cell density, but undetectable at high cell density.
View Article and Find Full Text PDFOncogenic human papillomavirus (HPV) types control the phenotype of cervical cancer cells through the sustained expression of the viral E6/E7 oncogenes. Here, we show that they strongly restrain expression of the putative tumor suppressor protein Dkk1 (Dickkopf-1) in HPV-positive cervical cancer cells through the restriction of p53 expression by the continuously expressed endogenous E6 oncoprotein. Moreover, our study reveals that compromised Dkk1 expression is linked to increased resistance of HPV-positive cervical cancer cells toward the proapoptotic activity of Cisplatin.
View Article and Find Full Text PDFThe iron-chelating drug ciclopirox (CPX) may possess therapeutic potential for cancer treatment, including cervical cancer. As is observed for other chemotherapeutic drugs, CPX can induce senescence or apoptosis in cervical cancer cells which could differently affect their therapy response. The present study aims to gain insights into the determinants which govern the switch between senescence and apoptosis in cervical cancer cells.
View Article and Find Full Text PDFOncogenic types of human papillomaviruses (HPVs) are major human carcinogens. The viral E6/E7 oncogenes maintain the malignant growth of HPV-positive cancer cells. Targeted E6/E7 inhibition results in efficient induction of cellular senescence, which could be exploited for therapeutic purposes.
View Article and Find Full Text PDFInt J Cancer
January 2020
The malignant growth of human papillomavirus (HPV)-positive cancer cells is dependent on the continuous expression of the viral E6/E7 oncogenes. Here, we examined the effects of iron deprivation on the phenotype of HPV-positive cervical cancer cells. We found that iron chelators, such as the topical antifungal agent ciclopirox (CPX), strongly repress HPV E6/E7 oncogene expression, both at the transcript and protein level.
View Article and Find Full Text PDFHuman papillomavirus (HPV)-induced cancers will remain a significant clinical challenge for decades. Thus, the development of novel treatment strategies is urgently required, which should benefit from improving our understanding of the mechanisms of HPV-induced cell transformation. This should also include analyses of hypoxic tumor cells, which represent a major problem for cancer therapy.
View Article and Find Full Text PDFHypoxia is linked to therapeutic resistance and poor clinical prognosis for many tumor entities, including human papillomavirus (HPV)-positive cancers. Notably, HPV-positive cancer cells can induce a dormant state under hypoxia, characterized by a reversible growth arrest and strong repression of viral E6/E7 oncogene expression, which could contribute to therapy resistance, immune evasion and tumor recurrence. The present work aimed to gain mechanistic insights into the pathway(s) underlying HPV oncogene repression under hypoxia.
View Article and Find Full Text PDFOncogenic types of human papillomaviruses (HPVs) are major human carcinogens. Cancer cells typically exhibit metabolic alterations which support their malignant growth. These include an enhanced rate of aerobic glycolysis ('Warburg effect') which in cancer cells is often linked to an increased expression of the rate-limiting glycolytic enzyme Hexokinase 2 (HK2).
View Article and Find Full Text PDFOncogenic types of human papillomaviruses (HPVs) are closely linked to the development of anogenital and head and neck cancers . The expression of the viral E6 and E7 genes is crucial for the transforming activities of HPVs. There is accumulating evidence that the HPV E6/E7 oncogenes can profoundly affect the cellular microRNA (miRNA) composition.
View Article and Find Full Text PDFHuman papillomavirus (HPV)-induced cancers are expected to remain a major health problem worldwide for decades. The growth of HPV-positive cancer cells depends on the sustained expression of the viral E6 and E7 oncogenes which act in concert with still poorly defined cellular alterations. E6/E7 constitute attractive therapeutic targets since E6/E7 inhibition rapidly induces senescence in HPV-positive cancer cells.
View Article and Find Full Text PDFOncogenic types of human papillomaviruses (HPVs) are major human carcinogens. The expression of the viral / oncogenes plays a key role for HPV-linked oncogenesis. It recently has been found that low oxygen concentrations ("hypoxia"), as present in sub-regions of HPV-positive cancers, strongly affect the interplay between the HPV oncogenes and their transformed host cell.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2017
Oncogenic human papillomaviruses (HPVs) are closely linked to major human malignancies, including cervical and head and neck cancers. It is widely assumed that HPV-positive cancer cells are under selection pressure to continuously express the viral E6/E7 oncogenes, that their intracellular p53 levels are reconstituted on E6/E7 repression, and that E6/E7 inhibition phenotypically results in cellular senescence. Here we show that hypoxic conditions, as are often found in subregions of cervical and head and neck cancers, enable HPV-positive cancer cells to escape from these regulatory principles: E6/E7 is efficiently repressed, yet, p53 levels do not increase.
View Article and Find Full Text PDFOncogenic types of human papillomaviruses (HPVs) cause cervical cancer and other malignancies in humans. The HPV E6 oncoprotein is considered to be an attractive therapeutic target since its inhibition can lead to the apoptotic cell death of HPV-positive cancer cells. The HPV type 16 (HPV16) E6-binding peptide pep11, and variants thereof, induce cell death specifically in HPV16-positive cancer cells.
View Article and Find Full Text PDFSpecific types of human papillomaviruses (HPVs) cause cervical cancer. Cervical cancers exhibit aberrant cellular microRNA (miRNA) expression patterns. By genome-wide analyses, we investigate whether the intracellular and exosomal miRNA compositions of HPV-positive cancer cells are dependent on endogenous E6/E7 oncogene expression.
View Article and Find Full Text PDFThe HPV E6 oncoprotein maintains the malignant phenotype of HPV-positive cancer cells and represents an attractive therapeutic target. E6 forms a complex with the cellular E6AP ubiquitin ligase, ultimately leading to p53 degradation. The recently elucidated x-ray structure of a HPV16 E6/E6AP complex showed that HPV16 E6 forms a distinct binding pocket for E6AP.
View Article and Find Full Text PDFThe expression of the human papillomavirus (HPV) E6/E7 oncogenes is crucial for HPV-induced malignant cell transformation. The identification of cellular targets attacked by the HPV oncogenes is critical for our understanding of the molecular mechanisms of HPV-associated carcinogenesis and may open novel therapeutic opportunities. Here, we identify the Lens Epithelial-Derived Growth Factor (LEDGF) gene as a novel cellular target gene for the HPV oncogenes.
View Article and Find Full Text PDFThe human papillomavirus (HPV) E6/E7 oncogenes play a crucial role in the HPV-induced carcinogenesis. In this study, the authors investigated whether silencing of endogenous HPV E6/E7 expression may influence the contents or amounts of extracellular microvesicles (eMVs) released from HPV-positive cancer cells. It was found that eMVs secreted from HeLa cells are enriched for Survivin protein.
View Article and Find Full Text PDFUnlabelled: The inhibitors of pyrimidine synthesis, leflunomide and FK778, have been reported to exert broad antiviral effects, in addition to their immunosuppressive activities. Their possible therapeutic benefit for transplantation medicine is currently discussed, because they also block the replication of human cytomegalovirus and human polyomavirus BK, which both cause important complications in transplant recipients. Here, we show that leflunomide and FK778 strongly enhance hepatitis B virus (HBV) replication in vitro.
View Article and Find Full Text PDFThe Enhancer of Zeste 2 (EZH2) protein has been reported to stimulate cell growth in some cancers and is therefore considered to represent an interesting new target for therapeutic intervention. Here, we investigated a possible role of EZH2 for the growth control of colon cancer cells. RNA interference (RNAi)-mediated intracellular EZH2 depletion led to cell cycle arrest of colon carcinoma cells at the G1/S transition.
View Article and Find Full Text PDFAfter a long period of scepticism and disbelief, tumor viruses are today recognized as a significant cancer risk factor for humans. Much has been learned about the viral transforming mechanisms and prophylactic vaccines have been developed against 2 major tumor viruses, HBV and HPV. Yet, many important issues of tumor virology remain unresolved and exciting new ones are emerging from recent discoveries.
View Article and Find Full Text PDFBackground: The enhancer of zeste homolog 2 (EZH2) gene exerts oncogene-like activities and its (over)expression has been linked to several human malignancies. Here, we studied a possible association between EZH2 expression and prognosis in patients with renal cell carcinoma (RCC).
Methods: EZH2 protein expression in RCC specimens was analyzed by immunohistochemistry using a tissue microarray (TMA) containing RCC tumor tissue and corresponding normal tissue samples of 520 patients.