Publications by authors named "Karin Harnesk"

Background: Activation of the complement system has been implicated in both acute and chronic states of neurodegeneration. However, a detailed understanding of this complex network of interacting components is still lacking.

Methods: Large-scale global expression profiling in a rat F2(DAxPVG) intercross identified a strong cis-regulatory influence on the local expression of complement receptor 2 (Cr2) in the spinal cord after ventral root avulsion (VRA).

View Article and Find Full Text PDF

The complement system is activated in a wide spectrum of CNS diseases and is suggested to play a role in degenerative phenomena such as elimination of synaptic terminals. Still, little is known of mechanisms regulating complement activation in the CNS. Loss of synaptic terminals in the spinal cord after an experimental nerve injury is increased in the inbred DA strain compared with the PVG strain and is associated with expression of the upstream complement components C1q and C3, in the absence of membrane attack complex activation and neutrophil infiltration.

View Article and Find Full Text PDF

Background: Damage to nerve cells and axons leading to neurodegeneration is a characteristic feature of many neurological diseases. The degree of genetic influence on susceptibility to axotomy-induced neuronal death has so far been unknown. We have examined two gene regions, Vra1 and Vra2, previously linked to nerve cell loss after ventral root avulsion in a rat F2 intercross between the DA and PVG inbred rat strains.

View Article and Find Full Text PDF

Local CNS inflammation takes place in many neurological disorders and is important for autoimmune neuroinflammation. Microglial activation is strain-dependent in rats and differential MHC class II expression is influenced by variations in the Mhc2ta gene. Despite sharing Mhc2ta and MHC class II alleles, BN and LEW.

View Article and Find Full Text PDF

Major histocompatibility complex (MHC) class II is of critical importance for the induction of immune responses. Levels of MHC class II in the nervous system are normally low, but expression is up-regulated in many disease conditions. In rat and human, variation in the MHC class II transactivator gene (C2ta) is associated with differential expression of MHC class II and susceptibility to autoimmune disease.

View Article and Find Full Text PDF

Presentation of Ag bound to MHC class II (MHC II) molecules to CD4+ T cells is a key event in adaptive immune responses. Genetic differences in MHC II expression in the rat CNS were recently positioned to allelic variability in the CIITA gene (Mhc2ta), located within the Vra4 locus on rat chromosome 10. In this study, we have examined reciprocal Vra4-congenic strains on the DA and PVGav1 backgrounds, respectively.

View Article and Find Full Text PDF