High-fat diets (HFD) are thought to contribute to the development of metabolism-related diseases. The long-term impact of HFD may be mediated by epigenetic mechanisms, and indeed, HFD has been reported to induce DNA methylation changes in white adipose tissue (WAT) near metabolism related genes. However, previous studies were limited to a single WAT depot, a single time-point and primarily examined the pre-pubertal period.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
April 2004
It has been suggested that elevated leptin levels underlie the low grade proinflammatory state in human obesity. We reasoned that if elevated leptin levels are an important factor in the proinflammatory state in obesity, then exogenous leptin administration during weight loss should counteract the concurrent beneficial effects of weight loss on the proinflammatory state. We therefore determined whether long-acting pegylated recombinant leptin (PEG-OB) prevents the decrease in cellular and humoral inflammation parameters during a very low calorie diet in healthy overweight young men.
View Article and Find Full Text PDFBackground: Patients treated with peritoneal dialysis frequently suffer from recurrent peritonitis episodes. During peritonitis, inflammatory mediators are released and a serofibrinous exudate is formed in the peritoneal cavity, which promotes fibrosis and abdominal adhesion development. Human peritoneal mesothelial cells (HMC) play a critical role in maintaining the intraperitoneal balance between fibrinolysis and coagulation by expressing the fibrinolytic enzyme tissue-type plasminogen activator (t-PA) and its specific inhibitor, plasminogen activator inhibitor-1 (PAI-1) as well as the procoagulant protein, tissue factor.
View Article and Find Full Text PDFBackground: The continuous physical and chemical irritation of the peritoneum in peritoneal dialysis patients can result in a nonbacterial serositis with increased fibrin deposition, thus promoting peritoneal fibrosis and adhesion development. By expressing the fibrinolytic enzyme tissue-type plasminogen activator (t-PA) and its specific inhibitor, plasminogen activator inhibitor-1 (PAI-1), human peritoneal mesothelial cells (HMC) play an important role in regulating peritoneal fibrinolysis.
Methods: Cultured HMC were used to examine the effect of a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, simvastatin, on the expression of t-PA and PAI-1.