Publications by authors named "Karin Ernits"

Toxin-antitoxins (TAs) are prokaryotic two-gene systems composed of a toxin neutralized by an antitoxin. Toxin-antitoxin-chaperone (TAC) systems additionally include a SecB-like chaperone that stabilizes the antitoxin by recognizing its chaperone addiction (ChAD) element. TACs mediate antiphage defense, but the mechanisms of viral sensing and restriction are unexplored.

View Article and Find Full Text PDF

Vaccinated convalescents do not develop severe COVID-19 after infection with new SARS-CoV-2 variants. We questioned how messenger RNA (mRNA) vaccination of convalescents provides protection from emerging virus variants. From the cohort of 71 convalescent plasma donors, we identified a patient who developed immune response to infection with SARS-CoV-2 variant of 20A clade and who subsequently received mRNA vaccine encoding spike (S) protein of strain of 19A clade.

View Article and Find Full Text PDF

Toxin-antitoxin (TA) systems are a large group of small genetic modules found in prokaryotes and their mobile genetic elements. Type II TAs are encoded as bicistronic (two-gene) operons that encode two proteins: a toxin and a neutralizing antitoxin. Using our tool NetFlax (standing for Network-FlaGs for toxins and antitoxins), we have performed a large-scale bioinformatic analysis of proteinaceous TAs, revealing interconnected clusters constituting a core network of TA-like gene pairs.

View Article and Find Full Text PDF

Rel stringent factors are bifunctional ribosome-associated enzymes that catalyze both synthesis and hydrolysis of the alarmones (p)ppGpp. Besides the allosteric control by starved ribosomes and (p)ppGpp, Rel is regulated by various protein factors depending on specific stress conditions, including the c-di-AMP-binding protein DarB. However, how these effector proteins control Rel remains unknown.

View Article and Find Full Text PDF

Stringent factors orchestrate bacterial cell reprogramming through increasing the level of the alarmones (p)ppGpp. In Beta- and Gammaproteobacteria, SpoT hydrolyzes (p)ppGpp to counteract the synthetase activity of RelA. However, structural information about how SpoT controls the levels of (p)ppGpp is missing.

View Article and Find Full Text PDF

Toxin-antitoxin (TA) gene pairs are ubiquitous in microbial chromosomal genomes and plasmids as well as temperate bacteriophages. They act as regulatory switches, with the toxin limiting the growth of bacteria and archaea by compromising diverse essential cellular targets and the antitoxin counteracting the toxic effect. To uncover previously uncharted TA diversity across microbes and bacteriophages, we analyzed the conservation of genomic neighborhoods using our computational tool FlaGs (for flanking genes), which allows high-throughput detection of TA-like operons.

View Article and Find Full Text PDF

An early-diverged yeast, () (), has biotechnological potential due to nutritional versatility, temperature tolerance, and production of technologically applicable enzymes. We have biochemically characterized from the type strain (CBS 8244) the GH13-family maltase AG2 with efficient transglycosylation activity on maltose. In the current study, transglycosylation of sucrose was studied in detail.

View Article and Find Full Text PDF

The Gram-negative bacterium Porphyromonas gingivalis is a secondary colonizer of the oral biofilm and is involved in the onset and progression of periodontitis. Its fimbriae, of type-V, are important for attachment to other microorganisms in the biofilm and for adhesion to host cells. The fimbriae are assembled from five proteins encoded by the mfa1 operon, of which Mfa5 is one of the ancillary tip proteins.

View Article and Find Full Text PDF

Genome of an early-diverged yeast () () encodes 88 glycoside hydrolases (GHs) including two α-glucosidases of GH13 family. One of those, the -encoded protein (AG2; 581 aa) was overexpressed in , purified and characterized. We showed that maltose, other maltose-like substrates (maltulose, turanose, maltotriose, melezitose, malto-oligosaccharides of DP 4‒7) and sucrose were hydrolyzed by AG2, whereas isomaltose and isomaltose-like substrates (palatinose, α-methylglucoside) were not, confirming that AG2 is a maltase.

View Article and Find Full Text PDF

The endo-levanase BT1760 of a human gut commensal Bacteroides thetaiotaomicron randomly cuts a β-2,6-linked fructan, levan, into fructo-oligosaccharides providing a prebiotic substrate for gut microbiota. Here we introduce the crystal structure of BT1760 at resolution of 1.65 Å.

View Article and Find Full Text PDF

The aim of the study was to investigate the metabolism of non-digestible oligo- and polysaccharides by fecal microbiota, using isothermal microcalorimetry. The five tested substrates were raffinose, melibiose, a mixture of oligo- and polysaccharides produced from raffinose by levansucrase, levan synthesized from raffinose, and levan from timothy grass. Two inocula were comprised of pooled fecal samples from overweight or normal-weight children, from healthy adult volunteers and a pure culture of Bacteroides thetaiotaomicron as a reference bacterium for colon microbiota.

View Article and Find Full Text PDF

α-glucosidases (including maltases and isomaltases) are enzymes which release glucose from a set of α-glucosidic substrates. Their catalytic activity, substrate specificity and thermostability can be assayed using this trait. Thermostability of proteins can also be determined using a high-throughput differential scanning fluorometry method, also named Thermofluor.

View Article and Find Full Text PDF