Background: Atherosclerotic cardiovascular disease (CVD) is a major cause of death in individuals with type 1 diabetes mellitus (T1DM). However, conventional risk factors do not fully account for the increased risk. This study aimed to investigate whether serum proteins associate with diabetes status and the occurrence of CVD in T1DM.
View Article and Find Full Text PDFLong-chain acyl-CoA synthetase 1 (ACSL1) catalyzes the conversion of long-chain fatty acids to acyl-CoAs. ACSL1 is required for β-oxidation in tissues that rely on fatty acids as fuel, but no consensus exists on why ACSL1 is induced by inflammatory mediators in immune cells. We used a comprehensive and unbiased approach to investigate the role of ACSL1 induction by interferon type I (IFN-I) in myeloid cells in vitro and in a mouse model of IFN-I overproduction.
View Article and Find Full Text PDFThe effect of increased triglycerides (TGs) as an independent factor in atherosclerosis development has been contentious, in part, because severe hypertriglyceridemia associates with low levels of low-density lipoprotein cholesterol (LDL-C). To test whether hyperchylomicronemia, in the absence of markedly reduced LDL-C levels, contributes to atherosclerosis, we created mice with induced whole-body lipoprotein lipase (LpL) deficiency combined with LDL receptor (LDLR) deficiency. On an atherogenic Western-type diet (WD), male and female mice with induced global LpL deficiency (i ) and LDLR knockdown ( ) developed hypertriglyceridemia and elevated cholesterol levels; all the increased cholesterol was in chylomicrons or large VLDL.
View Article and Find Full Text PDFThe ability of high-density lipoprotein (HDL) to promote cellular cholesterol efflux is a more robust predictor of cardiovascular disease protection than HDL-cholesterol levels in plasma. Previously, we found that lipidated HDL containing both apolipoprotein A-I (APOA1) and A-II (APOA2) promotes cholesterol efflux via the ATP-binding cassette transporter (ABCA1). In the current study, we directly added purified, lipid-free APOA2 to human plasma and found a dose-dependent increase in whole plasma cholesterol efflux capacity.
View Article and Find Full Text PDFCurr Opin Lipidol
October 2024
Purpose Of Review: Doubts about whether high-density lipoprotein-cholesterol (HDL-C) levels are causally related to atherosclerotic cardiovascular disease (CVD) risk have stimulated research on identifying HDL-related metrics that might better reflect its cardioprotective functions. HDL is made up of different types of particles that vary in size, protein and lipid composition, and function. This review focuses on recent findings on the specific roles of HDL subpopulations defined by size in CVD.
View Article and Find Full Text PDFBackground: Individuals with type 1 diabetes (T1D) generally have normal or even higher HDL (high-density lipoprotein)-cholesterol levels than people without diabetes yet are at increased risk for atherosclerotic cardiovascular disease (CVD). Human HDL is a complex mixture of particles that can vary in cholesterol content by >2-fold. To investigate if specific HDL subspecies contribute to the increased atherosclerosis associated with T1D, we created mouse models of T1D that exhibit human-like HDL subspecies.
View Article and Find Full Text PDFAltered apolipoprotein kinetics play a critical role in promoting dyslipidemia and atherogenesis. Human apolipoprotein kinetics have been extensively evaluated, but similar studies in mice are hampered by the lack of robust methods suitable for the small amounts of blood that can be collected at sequential time points from individual mice. We describe a targeted liquid chromatography tandem mass spectrometry method for simultaneously quantifying the stable isotope enrichment of several apolipoproteins represented by multiple peptides in serial blood samples (15 μl each) obtained after retro-orbital injection of C,N-lysine (Lys8) in mice.
View Article and Find Full Text PDFBackground: In type 1 diabetes, women lose their relative protection (compared to men) against coronary artery disease (CAD), while high-density lipoprotein cholesterol (HDL-C) is less strongly associated with lower CAD risk in women.
Objective: We aimed to assess whether sex differences in the HDL particle concentration (HDL-P) and cholesterol efflux capacity (CEC) association with CAD may explain these findings.
Methods: HDL-P (calibrated differential ion mobility analysis) and total and ATP binding cassette transporter A1 (ABCA1)-specific CEC were quantified among 279 men and 271 women with type 1 diabetes (baseline mean age 27·8 years; diabetes duration, 19·6 years).
Background: Cholesterol efflux capacity (CEC) predicts cardiovascular disease independently of high-density lipoprotein (HDL) cholesterol levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 (ATP-binding cassette transporter A1) pathway, but the underlying mechanisms are unclear.
Methods: We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 (apolipoprotein A1) in the different particles, and the CECs of plasma and isolated HDLs.
Background: Cholesterol efflux capacity (CEC) negatively correlates with cardiovascular disease risk. Small HDL particles account almost quantitively for CEC, perhaps mediated through efflux of outer leaflet plasma membrane phospholipids by ABCA1. People with type 1 diabetes (T1D) are at increased risk of coronary artery disease (CAD) despite normal levels of HDL-cholesterol (HDL-C).
View Article and Find Full Text PDFIncreased circulating levels of apolipoprotein C3 (APOC3) predict cardiovascular disease (CVD) risk in humans, and APOC3 promotes atherosclerosis in mouse models. APOC3's mechanism of action is due in large part to its ability to slow the clearance of triglyceride-rich lipoproteins (TRLs) and their remnants when APOC3 is carried by these lipoproteins. However, different pools and forms of APOC3 exert distinct biological effects or associations with atherogenic processes.
View Article and Find Full Text PDFBackground: Cholesterol efflux capacity (CEC) predicts cardiovascular disease (CVD) independently of HDL cholesterol (HDL-C) levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 pathway, but the underlying mechanisms are unclear.
Methods: We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 in the different particles, and the CECs of plasma and isolated HDLs.
Background: Pathogenetic mechanisms of the progression of NAFL to advanced NASH coupled with potential noninvasive biomarkers and novel therapeutic targets are active areas of investigation. The recent finding that increased plasma levels of a protein shed by myeloid cells -soluble Triggering Receptor Expressed on Myeloid cells 2 (sTREM2) -may be a biomarker for NASH has received much interest. We aimed to test sTREM2 as a biomarker for human NASH and investigate the role of sTREM2 in the pathogenesis of NASH.
View Article and Find Full Text PDFThe CANTOS (Canakinumab Anti-inflammatory Thrombosis Outcome Study) and colchicine trials suggest an important role of inflammasomes and their major product IL-1β (interleukin 1β) in human atherosclerotic cardiovascular disease. Moreover, studies in mouse models indicate a causal role of inflammasomes and IL-1β in atherosclerosis. However, recent studies have led to a more granular view of the role of inflammasomes in atherosclerosis.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
July 2023
APOA1 and APOB are the structural proteins of high-density lipoprotein and APOB-containing lipoproteins, such as low-density lipoprotein and very low-density lipoprotein, respectively. The 4 smaller APOCs (APOC1, APOC2, APOC3, and APOC4) are exchangeable apolipoproteins; they are readily transferred among high-density lipoproteins and APOB-containing lipoproteins. The APOCs regulate plasma triglyceride and cholesterol levels by modulating substrate availability and activities of enzymes interacting with lipoproteins and by interfering with APOB-containing lipoprotein uptake through hepatic receptors.
View Article and Find Full Text PDFPatients with chronic kidney disease (CKD) are at high risk for CVD. However, traditional CVD risk factors cannot completely explain the increased risk. Altered HDL proteome is linked with incident CVD in CKD patients, but it is unclear whether other HDL metrics are associated with incident CVD in this population.
View Article and Find Full Text PDFUnlabelled: Serum apolipoprotein C3 (APOC3) predicts incident cardiovascular events in people with type 1 diabetes, and silencing of APOC3 prevents both lesion initiation and advanced lesion necrotic core expansion in a mouse model of type 1 diabetes. APOC3 acts by slowing the clearance of triglyceride-rich lipoproteins, but lipid-free APOC3 has recently been reported to activate an inflammasome pathway in monocytes. We therefore investigated the contribution of hematopoietic inflammasome pathways to atherosclerosis in mouse models of type 1 diabetes.
View Article and Find Full Text PDFHypogonadism in males confers elevated cardiovascular disease (CVD) risk by unknown mechanisms. Recent radiological evidence suggests that low testosterone (T) is associated with mediobasal hypothalamic (MBH) gliosis, a central nervous system (CNS) cellular response linked to metabolic dysfunction. To address mechanisms linking CNS androgen action to CVD risk, we generated a hypogonadal, hyperlipidemic mouse model with orchiectomy (ORX) combined with hepatic PCSK9 overexpression.
View Article and Find Full Text PDFMatters arising regarding the lipidation form of plasma APOC3 that induces an alternative NLRP3 activation pathway.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
July 2022
Both type 1 and type 2 diabetes are associated with an increased risk of atherosclerotic cardiovascular disease (CVD). Research based on human-first or bedside-to-bench approaches has provided new insights into likely mechanisms behind this increased risk. Although both forms of diabetes are associated with hyperglycemia, it is becoming increasingly clear that altered lipoprotein metabolism also plays a critical role in predicting CVD risk in people with diabetes.
View Article and Find Full Text PDFAtherosclerotic CVD is the major cause of death in patients with type 1 diabetes mellitus (T1DM). Alterations in the HDL proteome have been shown to associate with prevalent CVD in T1DM. We therefore sought to determine which proteins carried by HDL might predict incident CVD in patients with T1DM.
View Article and Find Full Text PDFThis manuscript was sent to Joyce Bischoff, Guest Editor, for review by expert referees, editorial decision, and final disposition. Final decisions were approved by Jane Leopold, Guest Editor-in-Chief.
View Article and Find Full Text PDF