Publications by authors named "Karin Dahmen"

Thermally driven transitions between ferromagnetic and paramagnetic phases are characterized by critical behavior with divergent susceptibilities, long-range correlations, and spin dynamics that can span kHz to GHz scales as the material approaches the critical temperature , but it has proven technically challenging to probe the relevant length and time scales with most conventional measurement techniques. In this study, we employ scanning nitrogen-vacancy center based magnetometry and relaxometry to reveal the critical behavior of a high- ferromagnetic oxide near its Curie temperature. Cluster analysis of the measured temperature-dependent nanoscale magnetic textures points to a 3D universality class with a correlation length that diverges near .

View Article and Find Full Text PDF

In response to gradual nanoindentation, the surface of muscovite mica deforms by sudden stochastic nanometer-scale displacement bursts. Here, the statistics of these displacement events are interpreted using a statistical model previously used to model earthquakes to understand how chemically reactive environments alter the surface properties of this material. We show that the statistics of nanoindentation displacement bursts in muscovite mica are tuned by chemomechanical weakening in a manner similar to how the statistics of model events are tuned by a mechanical weakening parameter that describes how easily system-spanning cracks can be nucleated.

View Article and Find Full Text PDF

A simple model is used to simulate seizures in a population of spiking excitatory neurons experiencing a uniform effect from inhibitory neurons. A key feature is introduced into the model, i.e.

View Article and Find Full Text PDF

Charge modulations have been widely observed in cuprates, suggesting their centrality for understanding the high-T superconductivity in these materials. However, the dimensionality of these modulations remains controversial, including whether their wavevector is unidirectional or bidirectional, and also whether they extend seamlessly from the surface of the material into the bulk. Material disorder presents severe challenges to understanding the charge modulations through bulk scattering techniques.

View Article and Find Full Text PDF

A new statistical analysis of large neuronal avalanches observed in mouse and rat brain tissues reveals a substantial degree of recurrent activity and cyclic patterns of activation not seen in smaller avalanches. To explain these observations, we adapted a model of structural weakening in materials. In this model, dynamical weakening of neuron firing thresholds closely replicates experimental avalanche size distributions, firing number distributions, and patterns of cyclic activity.

View Article and Find Full Text PDF

Highly time-resolved mechanical measurements, modeling, and simulations show that large shear bands in bulk metallic glasses nucleate in a manner similar to cracks. When small slips reach a nucleation size, the dynamics changes and the shear band rapidly grows to span the entire sample. Smaller nucleation sizes imply lower ductility.

View Article and Find Full Text PDF

Recent experiments and simulations of amorphous solids plastically deformed by an oscillatory drive have found a surprising behavior-for small strain amplitudes the dynamics can be reversible, which is contrary to the usual notion of plasticity as an irreversible form of deformation. This reversibility allows the system to reach limit cycles in which plastic events repeat indefinitely under the oscillatory drive. It was also found that reaching reversible limit cycles can take a large number of driving cycles and it was surmised that the plastic events encountered during the transient period are not encountered again and are thus irreversible.

View Article and Find Full Text PDF

Acoustic emission (AE) measurements of avalanches in different systems, such as domain movements in ferroics or the collapse of voids in porous materials, cannot be compared with model predictions without a detailed analysis of the AE process. In particular, most AE experiments scale the avalanche energy E, maximum amplitude Amax and duration D as E ~ A and A ~ D with x = 2 and a poorly defined power law distribution for the duration. In contrast, simple mean field theory (MFT) predicts that x = 3 and χ = 2.

View Article and Find Full Text PDF

Until now most studies of discrete plasticity have focused on systems that are assumed to be driven by a monotonically increasing force; in many real systems, however, the driving force includes damped oscillations or oscillations induced by the propagation of discrete events or "slip avalanches." In both cases, these oscillations may obscure the true dynamics. Here we effectively consider both cases by investigating the effects of damped oscillations in the external driving force on avalanche dynamics.

View Article and Find Full Text PDF

Nacre, also known as mother of pearl, possesses extraordinary mechanical properties resulting from its intriguing hierarchical brick-and-mortar microstructures. Despite prior studies, interactions between nanoasperities during sliding still need to be elucidated. In this study, we measure slip events between nanograins of microlayers at high temporal resolution during torsion-induced sliding.

View Article and Find Full Text PDF

We consider the slow and athermal deformations of amorphous solids and show how the ensuing sequence of discrete plastic rearrangements can be mapped onto a directed network. The network topology reveals a set of highly connected regions joined by occasional one-way transitions. The highly connected regions include hierarchically organized hysteresis cycles and subcycles.

View Article and Find Full Text PDF
Article Synopsis
  • The transition from elastic to plastic deformation in metals shows similarities to other nonequilibrium systems, such as colloidal suspensions, particularly in how they respond to external loading.
  • Both systems exhibit effects like work hardening and yield stress, which often require "training" through repeated loading to exhibit purely elastic behavior.
  • In experiments with small single-crystalline copper pillars, the yielding and hysteresis decay under cyclic loading show a power-law scaling, mirroring the reversible-to-irreversible transition observed in other systems.
View Article and Find Full Text PDF

We observe two distinct interevent time patterns in the slip avalanches of compressed bulk metallic glasses (BMGs). Small slip avalanches cluster together in time, but large slip avalanches recur roughly periodically. We compare the timing patterns of BMG slip avalanches with timing patterns of earthquakes and with the predictions of a mean-field model.

View Article and Find Full Text PDF

The total energy of acoustic emission (AE) events in externally stressed materials diverges when approaching macroscopic failure. Numerical and conceptual models explain this accelerated seismic release (ASR) as the approach to a critical point that coincides with ultimate failure. Here, we report ASR during soft uniaxial compression of three silica-based (SiO_{2}) nanoporous materials.

View Article and Find Full Text PDF

We study avalanches in the Kuramoto model, defined as excursions of the order parameter due to ephemeral episodes of synchronization. We present scaling collapses of the avalanche sizes, durations, heights, and temporal profiles, extracting scaling exponents, exponent relations, and scaling functions that are shown to be consistent with the scaling behavior of the power spectrum, a quantity independent of our particular definition of an avalanche. A comprehensive scaling picture of the noise in the subcritical finite-N Kuramoto model is developed, linking this undriven system to a larger class of driven avalanching systems.

View Article and Find Full Text PDF

Atomistic simulations of binary amorphous systems with over 4 million atoms are performed. Systems of two interatomic potentials of the Lennard-Jones type, LJ12-6 and LJ9-6, are simulated. The athermal quasistatic shearing protocol is adopted, where the shear strain is applied in a stepwise fashion with each step followed by energy minimization.

View Article and Find Full Text PDF

Slowly strained solids deform via intermittent slips that exhibit a material-independent critical size distribution. Here, by comparing two disparate systems - granular materials and bulk metallic glasses - we show evidence that not only the statistics of slips but also their dynamics are remarkably similar, i.e.

View Article and Find Full Text PDF

The star KIC8462852 (Tabby's star) has shown anomalous drops in light flux. We perform a statistical analysis of the more numerous smaller dimming events by using methods found useful for avalanches in ferromagnetism and plastic flow. Scaling exponents for avalanche statistics and temporal profiles of the flux during the dimming events are close to mean field predictions.

View Article and Find Full Text PDF

Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all.

View Article and Find Full Text PDF

Using a probabilistic approximation of a mean-field mechanistic model of sheared systems, we analytically calculate the statistical properties of large failures under slow shear loading. For general shear F(t), the distribution of waiting times between large system-spanning failures is a generalized exponential distribution, ρ_{T}(t)=λ(F(t))P(F(t))exp[-∫_{0}^{t}dτλ(F(τ))P(F(τ))], where λ(F(t)) is the rate of small event occurrences at stress F(t) and P(F(t)) is the probability that a small event triggers a large failure. We study the behavior of this distribution as a function of fault properties, such as heterogeneity or shear rate.

View Article and Find Full Text PDF

We report moment distribution results from a laboratory experiment, similar in character to an isolated strike-slip earthquake fault, consisting of sheared elastic plates separated by a narrow gap filled with a two-dimensional granular medium. Local measurement of strain displacements of the plates at 203 spatial points located adjacent to the gap allows direct determination of the event moments and their spatial and temporal distributions. We show that events consist of spatially coherent, larger motions and spatially extended (noncoherent), smaller events.

View Article and Find Full Text PDF

High-entropy alloys (HEAs) are new alloys that contain five or more elements in roughly-equal proportion. We present new experiments and theory on the deformation behavior of HEAs under slow stretching (straining), and observe differences, compared to conventional alloys with fewer elements. For a specific range of temperatures and strain-rates, HEAs deform in a jerky way, with sudden slips that make it difficult to precisely control the deformation.

View Article and Find Full Text PDF

Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or "quakes". We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how amorphous solids, which are disordered materials, permanently deform under stress, revealing that this behavior is not fully understood yet.
  • Through molecular dynamics simulations and mean-field theory, researchers found that at a specific strain amplitude, the size of atomic clusters involved in cooperative rearrangements increases significantly, indicating a critical transition.
  • They draw parallels to 'front depinning' transitions from other materials to explain how this transition leads to chaotic motion, suggesting that this chaos arises from the material's inherent disorder rather than being constrained by it.
View Article and Find Full Text PDF

We explore the scaling behavior and complexity in the shear-branching process during the compressive deformation of a bulk metallic glass Zr(64.13)Cu(15.75)Al(10)Ni(10.

View Article and Find Full Text PDF