Publications by authors named "Karin Corsi"

Objective: To investigate the effect of vascular endothelial growth factor (VEGF) stimulation and the effect of blocking VEGF with its antagonist, soluble Flt-1 (sFlt-1), on chondrogenesis, using muscle-derived stem cells (MDSCs) isolated from mouse skeletal muscle.

Methods: The direct effect of VEGF on the in vitro chondrogenic ability of mouse MDSCs was tested using a pellet culture system, followed by real-time quantitative polymerase chain reaction (PCR) and histologic analyses. Next, the effect of VEGF on chondrogenesis within the synovial joint was tested, using genetically engineered MDSCs implanted into rat osteochondral defects.

View Article and Find Full Text PDF

Objective: To explore possible differences in muscle-derived stem cell (MDSC) chondrogenic differentiation in vitro and articular cartilage regeneration in vivo between murine male MDSCs (M-MDSCs) and female MDSCs (F-MDSCs).

Methods: Three different populations of M- and F-MDSCs (n = 3 of each sex) obtained via preplate technique, which separates cells based on their variable adhesion characteristics, were compared for their in vitro chondrogenic potential using pellet culture. Cells were assayed with and without retroviral transduction to express bone morphogenetic protein 4 (BMP-4).

View Article and Find Full Text PDF

Unlabelled: This study compared the osteogenic differentiation of F-MDSCs and M-MDSCs. Interestingly, M-MDSCs expressed osteogenic markers and underwent mineralization more readily than F-MDSCs; a characteristic likely caused by more osteoprogenitor cells within the M-MDSCs than the F-MDSCs and/or an accelerated osteogenic differentiation of M-MDSCs.

Introduction: Although therapies involving stem cells will require both female and male cells, few studies have investigated whether sex-related differences exist in their osteogenic potential.

View Article and Find Full Text PDF

Recent studies have shown that germ-line determination occurs early in development and that extracellular signaling can alter this fate. This denial of a cell's fate by counteracting its intrinsic signaling pathways through extrinsic stimulation is believed to be associated with oncogenesis. Using specific populations of multipotent skeletal muscle-derived stem cells (MDSCs), we have been able to generate tumors by subjecting cells with specific lineage predilections to concomitant differentiation signals.

View Article and Find Full Text PDF

Regenerative medicine holds great promise for orthopaedic surgery. As surgeons continue to face challenges regarding the healing of diseased or injured musculoskeletal tissues, regenerative medicine aims to develop novel therapies that will replace, repair, or promote tissue regeneration. This review article will provide an overview of the different research areas involved in regenerative medicine, such as stem cells, bioinductive factors, and scaffolds.

View Article and Find Full Text PDF

Objective: Muscle-derived stem cells (MDSCs) isolated from mouse skeletal muscle exhibit long-time proliferation, high self-renewal, and multipotent differentiation. This study was undertaken to investigate the ability of MDSCs that were retrovirally transduced to express bone morphogenetic protein 4 (BMP-4) to differentiate into chondrocytes in vitro and in vivo and enhance articular cartilage repair.

Methods: Using monolayer and micromass pellet culture systems, we evaluated the in vitro chondrogenic differentiation of LacZ- and BMP-4-transduced MDSCs with or without transforming growth factor beta1 (TGFbeta1) stimulation.

View Article and Find Full Text PDF

Unlabelled: After intramuscular implantation, BMP4-expressing NIH/3T3 fibroblasts and BMP4-expressing C2C12 myoblasts can promote ectopic cartilage and bone formation. Fibroblasts tend to undergo chondrogenesis, whereas myoblasts primarily undergo osteogenesis. These results suggest that endochondral bone formation may involve different cell types, a finding that could have major implications for the tissue engineering of bone and cartilage.

View Article and Find Full Text PDF

Currently, the major drawback of gene therapy is the gene transfection rate. The two main types of vectors that are used in gene therapy are based on viral or non-viral gene delivery systems. The viral gene delivery system shows a high transfection yield but it has many disadvantages, such as oncogenic effects and immunogenicity.

View Article and Find Full Text PDF

Chitosan-DNA nanoparticles were synthesized from the complexation of the cationic polymer with a ss-gal DNA plasmid, in order to study the efficacy of chitosan to develop a non-viral gene delivery system that can be optimized for efficient gene therapy. The optimal binding conditions were determined with the fluorescamine and PicoGreen assays. DNA distribution within the nanoparticle was visualized by electron transmission microscopy, while the size and morphology were assessed by atomic force microscopy.

View Article and Find Full Text PDF

Natural coral graft substitutes are derived from the exoskeleton of marine madreporic corals. Researchers first started evaluating corals as potential bone graft substitutes in the early 1970s in animals and in 1979 in humans. The structure of the commonly used coral, Porites, is similar to that of cancellous bone and its initial mechanical properties resemble those of bone.

View Article and Find Full Text PDF