Inhibitors of the interaction of menin (MEN1) with lysine methyltransferase 2A (KMT2A) have emerged as novel therapeutic options in the treatment of genetically defined acute leukemias. Herein, we describe the structure-based design, synthesis, and biological evaluation of novel inhibitors of the menin-KMT2A interaction. Our structure-activity relationship campaign focused on achieving high antiproliferative cellular activity while mitigating risks associated with CYP3A4-dependent metabolism and hERG inhibition, which were characterized in some early clinical candidates.
View Article and Find Full Text PDFMutant BRAF is one of the most common oncogenic drivers in metastatic melanoma. While first generation BRAF inhibitors are capable of controlling tumors systemically, they are unable to adequately treat tumors that have metastasized to the brain due to insufficient penetration across the blood-brain barrier (BBB). Through a combination of structure-based drug design (SBDD) and the optimization of physiochemical properties to enhance BBB penetration, we herein report the discovery of the brain-penetrant BRAF inhibitor () In mice studies, proved to be highly brain-penetrant and was able to drive regressions of A375 BRAF tumors implanted both subcutaneously and intracranially.
View Article and Find Full Text PDFCapping off an era marred by drug development failures and punctuated by waning interest and presumed intractability toward direct targeting of KRAS, new technologies and strategies are aiding in the target's resurgence. As previously reported, the tetrahydropyridopyrimidines were identified as irreversible covalent inhibitors of KRAS that bind in the switch-II pocket of KRAS and make a covalent bond to cysteine 12. Using structure-based drug design in conjunction with a focused in vitro absorption, distribution, metabolism and excretion screening approach, analogues were synthesized to increase the potency and reduce metabolic liabilities of this series.
View Article and Find Full Text PDFA series of 2,3,4,4a,10,10a-hexahydropyrano[3,2-b]chromene analogs was developed that demonstrated high selectivity (>2000-fold) for BACE1 vs Cathepsin D (CatD). Three different Asp-binding moieties were examined: spirocyclic acyl guanidines, aminooxazolines, and aminothiazolines in order to modulate potency, selectivity, efflux, and permeability. Guided by structure based design, changes to P2' and P3 moieties were explored.
View Article and Find Full Text PDFIn an attempt to increase selectivity vs Cathepsin D (CatD) in our BACE1 program, a series of 1,3,4,4a,10,10a-hexahydropyrano[4,3-b]chromene analogues was developed. Three different Asp-binding moieties were examined: spirocyclic acyl guanidines, aminooxazolines, and aminothiazolines in order to modulate potency, selectivity, efflux, and permeability. Using structure-based design, substitutions to improve binding to both the S3 and S2' sites of BACE1 were explored.
View Article and Find Full Text PDFOrofacial injury is a condition that disproportionately affects disadvantaged minorities--particularly young men--with great personal and health care consequences. Beyond the overt physical injury, a large proportion of the presenting patients manifest acute psychological sequelae. Although many patients may recover, in a sizeable proportion the symptoms may persist for extended periods of time and prove to be an obstacle to rehabilitation and reintegration.
View Article and Find Full Text PDF