The yeast galactose switch operated by the Gal4p-Gal80p-Gal3p regulatory module is a textbook model of transcription regulation in eukaryotes. The Gal80 protein inhibits Gal4p-mediated transcription activation by binding to the transcription activation domain. In , inhibition is relieved by formation of an alternative Gal80-Gal3 complex.
View Article and Find Full Text PDFKti12 (Kluyveromyces lactis toxin insensitive 12) is an evolutionary highly conserved ATPase, crucial for the tRNA-modification activity of the eukaryotic Elongator complex. The protein consists of an N-terminal ATPase and a C-terminal tRNA-binding domain, which are connected by a flexible linker. The precise role of the linker region and its involvement in the communication between the two domains and their activities remain elusive.
View Article and Find Full Text PDFThe highly conserved Elongator complex modifies transfer RNAs (tRNAs) in their wobble base position, thereby regulating protein synthesis and ensuring proteome stability. The precise mechanisms of tRNA recognition and its modification reaction remain elusive. Here, we show cryo-electron microscopy structures of the catalytic subcomplex of Elongator and its tRNA-bound state at resolutions of 3.
View Article and Find Full Text PDFPosttranscriptional RNA modifications occur in all domains of life. Modifications of anticodon bases are of particular importance for ribosomal decoding and proteome homeostasis. The Elongator complex modifies uridines in the wobble position and is highly conserved in eukaryotes.
View Article and Find Full Text PDFcells are killed by zymocin, a tRNase ribotoxin complex from , which cleaves anticodons and inhibits protein synthesis. Zymocin's action requires specific chemical modification of uridine bases in the anticodon wobble position (U34) by the Elongator complex (Elp1-Elp6). Hence, loss of anticodon modification in mutants lacking Elongator or related ( Toxin Insensitive) genes protects against tRNA cleavage and confers resistance to the toxin.
View Article and Find Full Text PDFThe highly conserved eukaryotic Elongator complex performs specific chemical modifications on wobble base uridines of tRNAs, which are essential for proteome stability and homeostasis. The complex is formed by six individual subunits (Elp1-6) that are all equally important for its tRNA modification activity. However, its overall architecture and the detailed reaction mechanism remain elusive.
View Article and Find Full Text PDFDuring translation elongation, decoding is based on the recognition of codons by corresponding tRNA anticodon triplets. Molecular mechanisms that regulate global protein synthesis via specific base modifications in tRNA anticodons are receiving increasing attention. The conserved eukaryotic Elongator complex specifically modifies uridines located in the wobble base position of tRNAs.
View Article and Find Full Text PDFCellular responses to starvation are of ancient origin since nutrient limitation has always been a common challenge to the stability of living systems. Hence, signaling molecules involved in sensing or transducing information about limiting metabolites are highly conserved, whereas transcription factors and the genes they regulate have diverged. In eukaryotes the AMP-activated protein kinase (AMPK) functions as a central regulator of cellular energy homeostasis.
View Article and Find Full Text PDFThe small, highly conserved Kti11 alias Dph3 protein encoded by the Kluyveromyces lactis killer toxin insensitive gene KTI11/DPH3 is involved in the diphthamide modification of eukaryotic elongation factor 2 and, together with Kti13, in Elongator-dependent tRNA wobble base modifications, thereby affecting the speed and accuracy of protein biosynthesis through two distinct mechanisms. We have solved the crystal structures of Saccharomyces cerevisiae Kti13 and the Kti11/Kti13 heterodimer at 2.4 and 2.
View Article and Find Full Text PDFAbstract Many transcription factors contribute to cellular homeostasis by integrating multiple signals. Signaling via the yeast Gal80 protein, a negative regulator of the prototypic transcription activator Gal4, is primarily regulated by galactose. ScGal80 from Saccharomyces cerevisiae has been reported to bind NAD(P).
View Article and Find Full Text PDFThe analysis of glucose signaling in the Crabtree-positive eukaryotic model organism Saccharomyces cerevisiae has disclosed a dual role of its hexokinase ScHxk2, which acts as a glycolytic enzyme and key signal transducer adapting central metabolism to glucose availability. In order to identify evolutionarily conserved characteristics of hexokinase structure and function, the cellular response of the Crabtree-negative yeast Kluyveromyces lactis to rag5 null mutation and concomitant deficiency of its unique hexokinase KlHxk1 was analyzed by means of difference gel electrophoresis. In total, 2,851 fluorescent spots containing different protein species were detected in the master gel representing all of the K.
View Article and Find Full Text PDFVP1, the major coat protein of polyomavirus, assembles intracellularly to virus-like particles if expressed in eukaryotes. Here, the nonconventional yeast Kluyveromyces lactis was used for production of virus-like particles of murine polyomavirus. The heterologous gene of VP1 was integrated in the LAC4 locus of the GAL/LAC genes.
View Article and Find Full Text PDFHere we report on vaccination approaches against infectious bursal disease (IBD) of poultry that were performed with complete yeast of the species Kluyveromyces lactis (K. lactis). Employing a genetic system that enables the rapid production of stably transfected recombinant K.
View Article and Find Full Text PDFBackground: The Crabtree-negative yeast species Kluyveromyces lactis has been established as an attractive microbial expression system for recombinant proteins at industrial scale. Its LAC genes allow for utilization of the inexpensive sugar lactose as a sole source of carbon and energy. Lactose efficiently induces the LAC4 promoter, which can be used to drive regulated expression of heterologous genes.
View Article and Find Full Text PDFThe budding yeast Kluyveromyces lactis has diverged from the Saccharomyces lineage before the whole-genome duplication and its genome sequence reveals lower redundancy of many genes. Moreover, it shows lower preference for fermentative carbon metabolism and a broader substrate spectrum making it a particularly rewarding system for comparative and evolutionary studies of carbon-regulated genetic networks. The lactose/galactose regulon of K.
View Article and Find Full Text PDFKluyveromyces lactis Lac12 permease mediates lactose and low-affinity galactose transports. In this study we investigated the effects of carbon sources on internalization of Lac12 using a LAC12-GFP fusion construct. When galactose- or lactose-grown cells are shifted to a fresh sugar medium, Lac12-GFP is removed from the plasma membrane and is localized intracellularly.
View Article and Find Full Text PDFBased on studies in yeast and mammalian cells the Elongator complex has been implicated in functions as diverse as histone acetylation, polarized protein trafficking and tRNA modification. Here we show that Arabidopsis mutants lacking the Elongator subunit AtELP3/ELO3 have a defect in tRNA wobble uridine modification. Moreover, we demonstrate that yeast elp3 and elp1 mutants expressing the respective Arabidopsis Elongator homologues AtELP3/ELO3 and AtELP1/ELO2 assemble integer Elongator complexes indicating a high degree of structural conservation.
View Article and Find Full Text PDFIn yeast, the role for the Elongator complex in tRNA anticodon modification is affected by phosphorylation of Elongator subunit Elp1. Thus, hyperphosphorylation of Elp1 due to inactivation of protein phosphatase Sit4 correlates with Elongator-minus phenotypes including resistance towards zymocin, a tRNase cleaving anticodons of Elongator-dependent tRNAs. Here we show that zymocin resistance of casein kinase hrr25 mutants associates with hypophosphorylation of Elp1 and that nonsense suppression by the Elongator-dependent SUP4 tRNA is abolished in hrr25 or sit4 mutants.
View Article and Find Full Text PDFThe KlICL1 gene, encoding isocitrate lyase in Kluyveromyces lactis, is essential for ethanol utilization. Deletion analyses identified two functional promoter elements, CSRE-A and CSRE-B. Transcription is activated on ethanol, but not on glucose, glycerol or lactate.
View Article and Find Full Text PDFRecent data suggest that hexokinase KlHxk1 (Rag5) represents the only glucose-phosphorylating enzyme of Kluyveromyces lactis, which also is required for glucose signalling. Long-term growth studies of a K. lactis rag5 mutant, however, reveal slow growth on glucose, but no growth on fructose.
View Article and Find Full Text PDFThe Gal4 protein represents a universally functional transcription activator, which in yeast is regulated by protein-protein interaction of its transcription activation domain with the inhibitor Gal80. Gal80 inhibition is relieved via galactose-mediated Gal80-Gal1-Gal3 interaction. The Gal4-Gal80-Gal1/3 regulatory module is conserved between Saccharomyces cerevisiae and Kluyveromyces lactis.
View Article and Find Full Text PDFThe available genomic sequences of five closely related hemiascomycetous yeast species (Kluyveromyces lactis, Kluyveromyces waltii, Candida glabrata, Ashbya (Eremothecium) gossypii with Saccharomyces cerevisiae as a reference) were analysed to identify multidrug resistance (MDR) transport proteins belonging to the ATP-binding cassette (ABC) and major facilitator superfamilies (MFS), respectively. The phylogenetic trees clearly demonstrate that a similar set of gene (sub)families already existed in the common ancestor of all five fungal species studied. However, striking differences exist between the two superfamilies with respect to the evolution of the various subfamilies.
View Article and Find Full Text PDFThe protein kinase Snf1/AMPK plays a central role in carbon and energy homeostasis in yeasts and higher eukaryotes. To work out which aspects of the Snf1-controlled regulatory network are conserved in evolution, the Snf1 requirement in galactose metabolism was analyzed in the yeast Kluyveromyces lactis. Whereas galactose induction was only delayed, K.
View Article and Find Full Text PDFUtilization of nonfermentable carbon sources by Kluyveromyces lactis and Saccharomyces cerevisiae requires the Snf1p kinase and the Cat8p transcriptional activator, which binds to carbon source-responsive elements of target genes. We demonstrate that KlSnf1p and KlCat8p from K. lactis interact in a two-hybrid system and that the interaction is stronger with a kinase-dead mutant form of KlSnf1p.
View Article and Find Full Text PDFThe Crabtree-negative yeast Kluyveromyces lactis is capable of adjusting its glycolytic flux to the requirements of respiration by tightly regulating glucose uptake. RAG5 encoding the only glucose and fructose phosphorylating enzyme present in K. lactis is required for the up-regulation of glucose transport and also for glucose repression.
View Article and Find Full Text PDF